XRAY: Detecting and Exploiting Vulnerabilities
in Arm AXI Interconnects

Melisande Zonta
ETH Zurich

Abstract—The Arm AMBA Advanced eXtensible Interface
(AXI) interconnect is a critical IP in FPGA-based designs.
While AXI and interconnect designs are primarily optimized
for performance, their security requires closer investigation—any
bugs in these components can potentially compromise critical
IPs like processing systems and memory. To this end, XRAY
systematically analyzes AXI interconnects. Specifically, it treats
the AXI interconnect as a transaction processing block that is
expected to adhere to certain properties (e.g., bus and data
isolation, progress). Then, XRAY employs a traffic generator that
creates transaction workloads with the aim of triggering violations
in the AXI interconnects. As the last piece of the puzzle, XRAY
checkers automatically flag transaction traces as either compliant,
errors, or warnings. Put together, XRAY comprises 13 properties,
has been tested on 7 interconnects and identifies 41 violations
corresponding to 41 vulnerabilities. When compared to existing
approaches such as verification IPs (VIPs) and protocol checkers
from commercial tools, XRAY identifies 19 known and 22 new
violations. We show the security impact of XRAY by sampling
5 XRAY violations to construct 3 proof-of-concept exploits on
realistic scenarios deployed on FPGA to leak intermediate data,
drop transactions, and corrupt memory.

Index Terms—AX]I, interconnect, security, vulnerability

I. INTRODUCTION

The Arm AMBA AXI (Advanced eXtensible Interface) in-
terconnect [|1]] is the communication backbone between com-
ponents (e.g., processors, memory, and peripheral devices).
Interconnects manage data flow efficiently by arbitration, band-
width distribution, and protection against stalling or protocol
violations. However, while these features are essential for per-
formance, the security of interconnects has received relatively
less attention. Most research and development efforts have con-
centrated on optimizing stalling and bandwidth distribution [2],
with some industrial IPs, such as firewalls [3]] from AMD Xilinx
or VIPs from Cadence [4], [S] or AMD Xilinx [|6], developed to
safeguard against timeouts and some fatal protocol violations.
A systematic exploration of interconnect security—addressing
issues such as bus sharing, memory corruption, and other
potential vulnerabilities has not been investigated.

To this end, we present XRAY which analyzes the security
of AXI-based interconnects. Our main insight is to first iden-
tify security properties that are critical to interconnects—data
invalidation, transaction ordering, concurrency, and integrity
of transaction IDs and bursts. We show that in the absence
of these properties, malicious IPs that are AXI compliant but
aim to exploit weaknesses in the interconnects and other IPs
can bring about security exploits (e.g., leaking data, tampering
writes, denial-of-service). Formulating the properties of an

Nora Hinderling
ETH Zurich

Shweta Shinde
ETH Zurich

abstract interconnect allows XRAY to: (a) generate AXI traffic
that can potentially uncover vulnerabilities by intentionally
modifying transactions; and (b) synthesize a property checker
which identifies if the interconnect was able to handle the
malicious traffic correctly or not. We build XRAY based on
these principles and then address design decisions such as
traffic granularity, traffic mutation strategies and synthesis of
checkers for different interconnects. Put together, XRAY is a
tool that can operate on any given interconnect to identify
security vulnerabilities.

To validate our approach, we select seven interconnects,

including most commonly used from AMD Xilinx [7], [8] and
Pulp [9] as well as non-commercial implementations [[10]. We
rigorously tested them using the XRAY tool. We uncovered
multiple vulnerabilities. Furthermore, we exploited some of the
vulnerabilities to corrupt the output of a classification task ran
on an AWS F1 instance. This enabled us to bypass all protocol
checkers and firewalls, ultimately demonstrating a memory
corruption attack on the host side.
Contributions. Our main contributions are XRAY—a tool to
analyze interconnect security. Our novel approach introduces
security properties which guide XRAY to generate transaction
traffic along with a checker that detects property violations. In
our evaluation of 7 interconnects, XRAY detects 41 vulnerabil-
ities. We use 5 vulnerabilities to show-case 3 case-studies that
demonstrate security impact. We responsibly disclosed all our
findings to AMD Xilinx and PULP in September 2024. XRAY
is available at https://axi-security.github.io/xray.

II. BACKGROUND
A. AXI Overview

AXI defines a manager-subordinate interface for concurrent,
bi-directional data exchanges [1f]. Each AXI interface has five
independent channels: Address Read (AR), Address Write
(AW), Data Read (R), Data Write (W), and Write Response
(B) channel. AXI supports both read and write transactions.
Managers initiate transaction requests, directing them to the ap-
propriate subordinates. The target subordinate processes these
requests, either providing the requested data (read) or accepting
the data and issuing an acknowledgment (write). Managers
can issue multiple outstanding transaction requests meaning it
allows managers to send multiple transaction requests without
waiting for earlier ones to complete. AXI supports out-of-order
transaction completion. The sequence of transactions is tracked
using an ID signal, which ensures that transactions with the

https://axi-security.github.io/xray

@ Subordinate Interface @ Manager Interface

Fig. 1: Example of FPGA design with interconnects.

same ID are completed in order, while those with different IDs
can be processed out of order. This adds flexibility but also
introduces complexity to the interconnect and the connected
subordinates, as maintaining the correct order of transactions
is challenging. AXI operates in two modes, AXI-lite and AXI-
full. AXI-full provides all AXI features including multiple
outstanding transactions, read interleaving, and burst transfers.
AXI-lite supports only single transactions where each request
transfers a single data word. In AXI-full, burst transactions
allow a single address request to read or write up to 256 data
words, significantly increasing data throughput.

B. Interconnects

AXl-based architecture is designed to facilitate efficient

communication between various IP cores through a structured
hierarchy of managers, an interconnect, and secondaries. Fig. []
shows commonly used managers and subordinates. Interconnect
acts as a communication hub, connecting multiple managers
to multiple subordinates. The interconnect has subordinate
interfaces for each controller and manager interfaces for each
peripheral, connecting controllers to subordinate interfaces and
peripherals to manager interfaces.
Interconnect Capabilities. The interconnect offers protocol
compliance, data routing, arbitration, and isolation using a
structure composed of arbiters, routers, and buffers. Fig. |Z|
shows a generalized view of AXI interconnects [[11]]. Intercon-
nects separate requests from acknowledgments. It places read
and write addresses, along with the data, in one buffer and
stores write acknowledgments and read data in another. Buffers
temporarily hold transactions, such as a write request from M1
or a read response from S2, to manage congestion or when
the receiving component is not ready. This ensures smooth
data flow and handles differences in processing speed between
components. The arbiter decides the order in which multiple
managers (e.g., M1 or M2) access a shared resource, such
as a subordinate memory, prioritizing transactions based on
predefined rules such as round-robin or fixed-priority. After the
arbiter selects a transaction, the router forwards it to the correct
destination (S1 or S2) by analyzing the transaction’s address.
Likewise, it routes acknowledgments back to the manager,
using the transaction ID (if available) to identify its destination.
The interconnects ensure compatibility between managers and
subordinates by handling protocol conversions when needed
(e.g., from AXI-lite manager to AXI-full subordinate). The
interconnects support burst transfers with variable transaction
lengths, burst types, and data width.

86|53 1|Manae
1

10[9]7|4 |2 Ma‘;‘g-
A

[II1]

‘O/Buffer

AW, W, AR,
Channels

B,R,
Channels

Y Y
8653 1|Subord 10/ 9 (7]4]2 300

Fig. 2: Interconnect structure.

\8|6|5|3|1\J h0|9|7|4|2lz]
L M L M

[1 1S] [[[7]4]2]]
C M1 (M2)

Read
Value

a. Dropped write b. Stalling write Write

Value
Fslslslll } F9|7|4|2| } Fslslsll\] F9|7|4|2|]
M1 M2 M1 M2

i Corrupted

Value

DMissing

F6|5|3|1| } [10[o]7]4]2] } F9 7]4]2 Value
ML A S2 S2)

d. Wrong bus sharing c. Wrong read routing

Fig. 3: Examples of interconnect behavior.

III. MOTIVATION

Threat Model. In a system with m managers and n sub-
ordinates connected via an interconnect, we assume at least
one subordinate is not AXI compliant. The interconnect, im-
plemented in Verilog, SystemVerilog, or VHDL, is expected to
route transactions between potentially non-compliant IPs while
maintaining its own AXI compliance. However, it may have
functional issues, such as mishandling transactions, inadequate
isolation, or failure to recover from protocol violations. These
vulnerabilities could expose the system to risks like data
leakage, corruption, or denial-of-service attacks. Concretely,
we assume one of the managers, while being AXI compliant,
is completely controlled by the adversary and aims to mount
attacks on the interconnect, subordinates, and other IPs.

We take a concrete AXI interconnect and explain how it can
deviate from the expected behavior. Consider a system with
two subordinates, of which one may not be AXI-compliant,
connected to two managers via the AMD Xilinx AXI intercon-
nect [7]. One of the managers could potentially be malicious,
with the ability to access sensitive data of the other manager or
transmit incorrect information to a subordinate. Fig. 2] illustrates
two managers, M1 and M2, successfully completing read and
write transactions, with values routed correctly and processed

sequentially. In this scenario, M1 serves as the victim, while
M2 could be malicious, and subordinates S1 and S2 might
be faulty. Next, we present example scenarios to demonstrate
potential security vulnerabilities M1 can exploit.

Dropped Write. In Fig.[3h., S1 does not sample the address or
data due to an incorrect timing in transaction ordering. When
used with M1, this causes a write transaction from M1 to
S1 to be dropped, thus not writing value 5 to S1. It is the
interconnect’s job to prevent such faulty implementations of
S1 from impacting correctness of transactions. Specifically, the
interconnect’s buffering and ordering mechanism should have
prevented the drop.

Stalling Write. Fig.[3p. shows M1 and M2 operating normally
until a write transaction from M1 stalls while processing the
value 5. This intentional stall by M1 subsequently blocks M2
from making progress after writing the value 4 to S2 resulting
in a denial of service (DoS). The subordinate fails to time
out after not receiving an acknowledgment. The interconnect’s
arbitration mechanism should have prevented this.

Wrong Read Routing. Fig. Bk. shows that the read trans-
actions values 8 and 10 get wrongly routed between M1 and
M2. S1 and S2 do not correctly support the transaction IDs,
and the router does not verify if the returned ID matches an
outstanding transaction, allowing out-of-order processing but
without confirming if ACKs belong to the correct transactions.
Wrong Bus Sharing. In Fig. [3d., M1 initiates the final read
transaction, the read data 8 is not only returned to M1 but
also appears on M2’s read data bus, indicating unintended
sharing. A failure from S1 to clear data after the transaction
completes results in sharing. The interconnect’s routing and
isolation mechanisms should have prevented the sharing.

As an example, we analyze here the root cause of the bus
sharing due to the interconnect, specifically the interface signals
as shown in Fig. BJd.{4] In this simplified example, M1 sends
data to the address addr of S1. While it is normal to see
the address and data on the interface connected to S1, it is
unexpected to see data appear on the interface connected
to M2. Interestingly, we observe that while ¢c_ml_rdata_i
fails to clear its bus when the signal ic_ml_rvalid_i goes
low at t=7, proper clearing does occur for ic_sl_rdata_o
at t=9. This indicates an initial issue with the S1 interface
failing to clear data when it becomes invalid, although the
interconnect attempts to resolve the problem on the output
side. The complication arises when the data also appears on
the ic_s2_rdata_o bus from t=8 to t=9, indicating unintended
bus sharing which could lead to the leakage of sensitive data
from M1 to M2. While S1 might be expected to clear the data,
it is ultimately the interconnect’s responsibility to make sure
that such bus sharing does not occur. In fact, interconnects like
AMD Xilinx SmartConnect [8] and PULP crossbar [[12] handle
this correctly by clearing the data once it is not in use.

IV. XRAY OVERVIEW

We present a systematic approach to detect the above de-
scribed types of vulnerabilities that can arise in interconnects
using XRAY. Given an interconnect, XRAY first analyzes it
to capture representative traffic. Then it mutates the traffic to

S T O T O I O O O O I O
resetn
ie_st_araddr i 777 _addt ¥/ 7
ic_st_avalidi [\
[\
ic_s1_rdata_o 27 hdata X 7
ic_s1_rvalid_o /—_
ic_s1_rready_i / _
ic_m1_araddr_o 777777777722222%__adde X777 777
icmiavaido]

ic_s1_arready_o

ic_m1_arready_i /_\
ic_m1_rdata_i 77777 data =~
ic_m1_rvalid_i /_\

ic_m1_rready_o /—L

ie_s2_rdata_o 277 Kdaka X,

ic_s2_rvalid_o

Fig. 4: Bus sharing example. The interface naming refers to Fig

Ml M2 Ml M2 Ml M2 Ml M2 Ml M2

Ml M2 MI M2 Ml M2

R

®) m ®)

EEEEREEE
EEEEEEER
EEEE

(U] @ @ (4) (

Fig. 5: Example of traffic from two managers. Scenario 1 shows manager
1(M1) initiating a read transaction while manager 2(M2), slightly delayed,
performs a write. In Scenario 2, M1 executes a burst read followed by M1’s
write transaction. Scenario 3 illustrates concurrent read and write transactions
from M1 and M2, respectively. Scenarios 4 and 5 depict rapid read or write
transactions (spamming) from M1 or M2, while the other manager carries out
normal transactions. Scenario 6 explores out-of-order transactions. Scenario 7
involves a stalled read from M1 blocking M2’s transactions, and Scenario 8
shows a stalled burst read from M1 similarly blocking M2. These scenarios
can be reversed between managers and applied to different transaction types.

simulate a wide range of realistic scenarios and executes the
interconnect under this traffic. Lastly, XRAY defines oracles
to detect wrong behaviors. XRAY represents the oracles as
assertion checks and places them between the managers, sub-
ordinates, and interconnect. The checkers determine whether
each output trace is benign or indicates a potential violation.
XRAY needs to make three key decisions to realize the above
approach. The first decision is at what granularity to oper-
ate. AXI protocol defines transactions, channels, and signals.
XRAY’s threat model treats the interconnect as a black box,
with managers controlling only transactions, so it focuses on
transactions exclusively. The second decision is how to mutate
the traffic. As shown in Fig. 5] traffic consists of sequences of
read and write transactions with varying timings. XRAY focuses
on key AXI protocol features, adjusting parameters like which
manager initiates transactions, transaction types (read, write),
and modes (normal or burst). Finally, XRAY needs oracles to
identify vulnerabilities in the output traces generated by the
mutated traffic. To achieve this, we define the properties to
capture the expected behavior of an interconnect.
Existing Properties. We reviewed both industrial Verifica-
tion IPs (VIPs) from sources like Xilinx and Arm, and non-
commercial tools (e.g., eXpect [13]], Gisselquist [10]). We used

TABLE I: XRAY Properties. Detailed description of our properties.

the properties from these works as a base to capture problematic
interconnect behaviors (see Tab. [l and Tab. [[). However,
existing set of properties are not sufficient to detect interconnect
violations, which lead to issues outlined in Section

XRAY Properties. XRAY introduces new properties not cov-
ered by existing VIPs which are specific to interconnects, as
shown in Tab. [l We summarize them below:

Reset: System signals must be cleared after a reset.

Data Invalidation: Outdated or unnecessary values must be
cleared after use, preventing persistent data from causing errors.
This invalidation could be triggered at different stages of
transactions, both during reset and normal operation.
Ordering: The sequence of requests (address and data) and
acknowledgments must be correct to ensure that transactions
occur in the expected order. This is critical for data integrity and
synchronization. XRAY includes timeout properties to ensure
that transactions are discarded if they stalled for too long,
preventing system hangs.

Concurrency: Simultaneous issuance of read and write transac-
tions must preserve transaction completion and data isolation.
Burst Transfer: Data bursts must be properly handled, and
completed without loss.

ID: Acknowledgment IDs must match the corresponding re-
quest IDs. This is vital for tracking and validating transactions
within the system. Mishandling the IDs can lead to improper
routing of transactions.

V. XrAY TOOL

We build two XRAY components as summarized in Fig. [

A. Traffic Generator

XRAY generates AXI traffic and monitors the interconnect’s
response across various scenarios, including reset, read, write,
concurrent transactions, out-of-order operations, stalling, and
spamming. It varies the transaction types, address/data widths,
and increment steps. In full mode, it also changes burst types
and lengths. For concurrency, XRAY modifies in addition the
interconnect’s address range. For spamming, it also tests buffer
handling by varying buffer length. For out-of-order scenarios

P# Category Sub Category | Transaction Property |
1 Reset - R/W Valid signals should be cleared upon reset ‘ “ XRAY \
5 Reset RIW Address and data should be cleared Tnputs | DUT Outputs!
Data upon reset |
3 Invalidation Data Clearance R/W Values should be cleared after usage 'TRACE output 3
. Data of one manager shouldn’t be present E = s J_’F_mok
4 Data Isolation R/W . IC| @ IC|
on another manager bus @ @ Simulation | | \WARNIN
5 Data Ordering R The data should follow the associated address Mut. Strat. |
6 Data Ti ¢ R The transaction should be cancelled ! 7
Ordering ata Timeou if the ack does not follow the address R R R
7 Data/Address W Data and addr tive at thy ti
Timeout ata anc acdress are active at the same ime | Rjg 6: XRAY Tool. XRAY takes as input the interconnect under analysis, alon,
g p y g
3 Ack Ordering W Ack should come after address and data have | with M2, S1, and S2. XRAY has two components: a traffic generator (TG) with
— been transmitted i mutation strategies and a checker (C) connected to each interconnect interface.
. The transaction should be cancelled if the ack . | . .
9 Ack Timeout w does not follow the data The design under test (DI_JT) runs in simulation or on FPGA, where XRAY
A read and a write transaction are issued generates a report of warnings and errors for each trace.
10 | Concurrency R/W .
at the same time
11| Burst Bursts Number | R | Ihe humber of burst should map P# [[2[3][4]5][6]7[8[o]0[lI]2]13
2 Transfer Last Burst RIW The last signai should be issued only VIP/P_'C V1| x X X X| /| X XX Vil v
ast Burs at the last burst transfer Severity | E E|/E|E|W|]E|W| W]|]E | W) |E w E
The acknowledgment ID should match LoC 14 |17 |17 |16 |70 | 50 | 50 | 70 | 50 | 20 | 20 | 19 | 19
13 | ID w
the request ID

TABLE II: Property Overlap. v indicates others VIP/PC cover the property,
X indicates a new property, and [v'] shows partial coverage. E flags security
concerns, while W indicates concerning behaviors. LoC represents the number
of lines of code needed to implement each distinct property (e.g., property 2
is replicated 6 times, but the count reflects only a single instance).

in full mode, it involves adjusting all of the above parameters
for in-flight transactions, while in lite mode, XRAY tests
outstanding transactions. For stalling, it blocks certain signals
at various transaction stages, including the final burst.

B. XRAY Checker

Translating the safety properties from Tab. [l into synthesiz-
able SystemVerilog assertions often requires a transformation
into more complex concrete units like control logic or state
machines. Most can be handled with simple if-else conditions,
but as shown in Tab. [[Il the ordering properties require more
complex implementations due to the temporal logic. Tracking
out-of-order transactions, especially when enforcing ordering
constraints, necessitates introducing various internal data struc-
tures. XRAY implements a lite and full mode version of its
checker supporting both modes of the connected interface.

VI. EVALUATION
A. Setup

We selected a diverse set of 7 interconnects ranging from
industrial IPs provided by Xilinx such as Smartconnect (XS)
and Interconnect (XI) and by open-source platforms such as
Pulp (PU) and Gisselquist (GC). Tab. outlines the features
that each interconnect advertises in their documentation. Most
interconnects promote their protocol compliance, burst transfer
capabilities, and arbitration features. However, none mention
handling timeouts standalone. A setup can comprise IPs which
use different AXI modes, and interconnects ensure they can
operate with each other. For the interconnects that support
this auto-configuration, we tested all possible combinations of
manager, interconnect, and subordinate in lite and full modes.

We consider a setup with two managers and subordinates
(M1/S1 and M2/S2), allowing M1 and M2 to connect to
either subordinate one at a time, enabling XRAY to detect
routing, isolation, or interconnect issues. M1 is XRAY’s traffic
generator. Both M2 and the subordinates (S1, S2) use the
same AXI implementations for a fair comparison, extracted

Buffer | Arbit-
Config | ration

Protocol | Auto
Bridging | Config

Interconnects AXI Burst
/Features Compliance | Transfer

Security | Time
Isolation | Out

Pulp Xbar (PU) [12 4 v 4 X X X X

G ist Xbar (GC) |14 v v/ v / x x X X

Xilinx Interconnect (XI) |7 v % v v/ v/ x v x

Xilinx Smartconnect (XS) |8 v v X v X X v v

TABLE III: Interconnect Features. Combines both the lite and full versions.

via Vivado [15]], [16]. All are written in Verilog/System Verilog,
with the subordinate emulating a small memory using at least
four built-in registers. Gisselquist [[10] and eXpect [[13]] demon-
strated that the AMD Xilinx subordinate implementation is not
AXI-compliant although it is commercially used in hardware
designs hence this selection for our test setup. Following the
mutation strategy in Section we simulate 37844 test cases
for interconnect for lite and 171828 for interconnect for full. We
parallelized the experiment for the 7 interconnects which took
about 10 days. We selected error-generating test cases, shown
in Tab. and executed them on a VCU118 [17]. For the
concurrency scenario, we also tested on a Zynq ZCU102 [18]
to simulate a cloud environment using Vitis [19]], where the
processing system (PS) represents the host VM. Finally, after
the local cloud simulation, we ran one test on AWS F1. We
assess the impact of the deployed checkers on FPGA area
and power. The lite checker uses 94 LUTs, 42 Flip-flops and
consumes 0.210W while the Full checker uses 395 LUTs, 517
Flip-flops and 0.628W. Lastly, we compare XRAY with VIPs
and PC from AMD Xilinx [5]], [20] and Cadence [5]].

B. Summary of Vulnerabilities

Tab. [[V] shows the results for each of the 7 interconnects.
Vulnerability Types. XRAY identifies 9 types of vulnerabil-
ities, of which DoS, bus sharing, and incorrect routing were
explained in Section Additionally, it detects two types of
memory corruption vulnerabilities: (a) corruption during the
final write burst transfer, leading to an extra write when the
indicator of the last burst transfer (wlast) signal is not properly
raised, (b) corruption when the interconnect issues concurrent
read and write transactions. Then, buffer overflow is caused by
improper handling of internal buffers within the interconnect.
Lastly, read data leakage occurs when the bus is not cleared
after the data becomes invalid.

Detected Vulnerabilities. XRAY identifies 41 total vulnera-
bilities. Due to space limitations, we will highlight only a few
notable results from Tab. [V} Overall, XI¢ is vulnerable to all
identified issues, while XS has the fewest vulnerabilities, with
PUr falling in between. This is probably because XI offers the
highest level of user configurability, making it more prone to
incorrect implementations or conflicting requirements, whereas
XS manages many aspects automatically, reducing errors. All
interconnects are vulnerable to DoS attacks due to the lack
of internal timeout mechanisms, despite the arbiter’s role in
preventing resource monopolization. However, the propagation
of DoS from a manager to a subordinate can be mitigated, as
seen in XI; ’s default setting, which permits only one transaction
at a time. XS is not vulnerable to last burst vulnerabilities,
likely due to its built-in logic that tracks and ensures the
correct number of burst transfers. All interconnects operating
in full mode are vulnerable to memory corruption caused by

I Routing !
Manager 2

resetn

aedeor 1 X' 2 XS24 X277

arvalid

Manager 1

arready
wata 77722277 7222 Xb XCe X274 & Y7
rvalid 4/—\—/1

rready

r Routing —

‘Manager 2

resetn

Manager 1

b araddr 1 2 3 1 W7zzzzzzz72777 8- A 727777
. arvalid

arready

data 77777 X a (o X 727727277272727772277

valid

rready

Fig. 7: Buffer Overflow. a. Depicts normal scenario b. Illustrates the vulner-
ability. We show each manager’s perspective with GC as interconnect. For
brevity, the diagram shows an example with a buffer length of 3.

concurrent read and write operations, a non-deterministic issue
that is difficult to resolve without adding significant logic
overhead. 12 vulnerabilities are tied to specific unexpected
parameter settings. For example, GC’s Low_Power_Mode, when
activated, prevents issues like bus sharing and data leakage.
In a similar way, for XI; and Xlp, enabling the Data_Fifo
parameter in the configuration prevented these vulnerabilities.
Additionally, 8 vulnerabilities in XIr and XS are linked to spe-
cific manager/subordinate implementations configurations. For
instance, when the manager is in full mode and the subordinate
is in lite mode, protocol conversion by the interconnect led to
protocol bridging issues in 5 cases.

Comparison to VIP/PC. As summarized in Tab. [[V] of the 41
vulnerabilities, 19 are detected by VIPs, while 22 go undetected
because of the lack of properties. Although VIPs include
timeout properties that flag all 16 DoS issues, they cannot fully
evaluate arbiter functionality since they only operate between
a single manager and subordinate interface. Interestingly, VIPs
can still detect some cases, like buffer overflows, where a
dropped transaction could lead to a DoS, triggering timeout
mechanisms.

C. Exploiting Vulnerabilities

Of the 41 vulnerabilities detected by XRAY, we picked 5 and
present 3 end-to-end exploits. For the remaining 35 vulnerabil-
ities, we confirmed that XRAY reported vulnerabilities are true
positives and unique (i.e. no duplicates) by re-executing the
setup with the corresponding traffic and manual analysis.
Buffer Overflow. M1 and M2 are connected to S1 acting as
memory via GCr. M2 is an additional IP, while M1 is a monitor
IP regularly polling the memory and potentially untrusted. In
this case M1 triggers outstanding transactions. Fig. shows
M1 making 3 read requests to addresses 1, 2, 3 at t=0, 1, 3,
with the subordinate responding by sending values a, b, and
c at t=5, 7, 8. At t=10, M2 requests a read from address 4,
receiving the value d at t=12. Fig. illustrates M1 sending

Interconnects/ DoS DoS V{”:i?e Cﬁi‘::;{) n ::IIIZ:Z Unallowed Read Data Buffer COM'_:::]‘:‘L Total #
Vulnerabilities Read Write Last Burst Last Burst ack Bus Sharing Leakage Overflow concurrency Vuln.
Pulp lite (PUL) ®[v][O]v @D[x] @ X @] x ®]x No 6
Pulp full (PUp) ®|v/]|®|v @] v] x | No No No No] «x 5
Gisselquist lite (GCr) ®|v|O®|v No 4 x 3 x (| x No 5
Gisselquist full (GCr) ®|/]|®]v @] v] x [N D> x B x N] «x 7
Xilinx Interconnect lite (XI.) | No @ v No 4 X 3 X No No 3
Xilinx Interconnect full (XIr) | <6> | v/ v v [x @ V|4 x 3 x v x 9
Xilinx Smartconnect (XS) @ v v No No No 4 X 4 X 6 v X 6

TABLE IV: XRAY Results. Greyed-out cells represent vulnerabilities that cannot occur in lite interconnects; numbers correspond to the properties triggered by the
vulnerabilities, as listed in Tab.[I} circle indicates vulnerabilities that hold unconditionally; diamond denotes vulnerabilities that occur only under specific parameter
combinations; square marks vulnerabilities present in certain manager/subordinate mode combinations (lite/Full); v'and Xindicate whether the vulnerabilities were

detected by AMD Xilinx and Cadence VIPs and protocol checker.

4 requests: the same 3 as before, plus a request to address 1.
At this point, the buffer of issued transactions is full, causing
additional transactions to be dropped on S1’s side as a malicious
stalling of read ready signal propagates to it. This leads to
a chain reaction, where M2’s read is not processed due to
this stalling, resulting in a DoS for both managers and data
corruption, as the result is incorrect. This dropped read indicates
that ultimately M1 exploits a vulnerability in the subordinate
but the interconnect also failed to handle the overflow correctly.
XRAY’s ordering property detected this and flagged the error.
Concurrency. We simulate a scenario where a user accelerates
a classification task using AWS cloud FPGA. The user has
access to a host VM, enabling them to upload their design onto
the FPGA. In addition to including 2 AMD Xilinx IPs like a
small memory component, and an XS interconnect, the user
integrates a firewall that guarantees no stalling or unauthorized
access to protect the PS and the custom logic from each other.
To perform arithmetic operations necessary for classification,
the user employs a pre-built arithmetic (ALU) IP without access
to its underlying RTL. In this scenario, the attacker controls
the ALU IP and continuously initiates write transactions to
perform computations. Their goal is to alter the output on the
host side without alerting the user to the corruption of their
program. We exploit a vulnerability identified by XRAY in
XS, which occurs when the interconnect processes concurrent
read and write transactions, leading to memory corruption on
the subordinate’s side and compromising execution integrity.
XRAY’s concurrency property flagged this. As shown in Fig. [8]
when the host sends a sequence of read transactions to execute
the classification task (from addresses O and 4), and the addition
IP simultaneously initiates a write transaction to address 8 with
value b, the interconnect mishandles the interleaving of these
transactions while propagating the non AXI-compliant memory
subordinate behavior. Consequently, b is written to 0, causing
the host to read incorrect data when accessing the address again.
This erroneous execution occurs without any warnings from the
shell or the firewall integrated into the custom logic. As a result,
the user ends up with corrupted data for their task and remains
unaware of the issue. While we assume the ALU IP is attacker-
controlled, the triggered traffic remains AXI-compliant and
could potentially occur accidentally during benign operations,
though it may not be deterministic in our exploit.

Wrong Bus Sharing. We recreate the scenario described in
Fig. 3] from Section [IlT, where M1 and M2 are connected to S1
via PUL. In this case, M2 is an addition IP untrusted, while M1

Custom Logic

Subordinate
SH

Read(0x00)
Read50x04;

Read(0x00,
Read(0x04)

Classification task,

F1 Instance

Fig. 8: AWS F1 setup. Host VM connected to an FPGA VCU118 with an AWS
shell directly integrated. The custom logic has XS as interconnect connecting
the shell and an ALU IP to the subordinate acting as memory. An AMD Xilinx
Firewall IP is placed between the shell and the interconnect.

reads sensitive data from the small memory. The vulnerability
allows M2 to gain access to M1’s sensitive data on the bus.

VII. RELATED WORK

Interconnects have been studied for risks of DoS and stalling.
New interconnects address this with fairness in arbitration of
resource allocation or predictability for real-time design [2],
[L1], [21]-[23]]. Adding wrappers and modules to existing
interconnects is another effective solution to ensure specific
system requirements (e.g., access control mechanism or traffic
regulation) for real-time systems [24], [25]. XRAY focuses on
security challenges such as transaction integrity or data leakage.

Fern et al. highlight hardware Trojan attacks on Trust-
Zone [26], [27], emphasizing the need for interconnect security.
Fuzzing or CVE analysis [28]-[30] can uncover CPU core
vulnerabilities or malicious hardware [31[|-[34]]. These methods
focus on known attack vectors but may overlook subtle issues
or create unrealistic, non-compliant traffic. XRAY uses targeted
and compliant traffic to uncover vulnerabilities.

Verification IPs and protocol checkers are popular, with
offerings from AMD Xilinx [3]], [6], [20], Cadence [4], [5],
and Synopsys [35]. XRAY reasoning stems from our properties
to find new vulnerabilities. eXpect captures AXI protocol func-
tional and security specifications [13] but does not reason about
interconnects. eXpect uses signal-level interactions between
managers and subordinates while XRAY uses transactions.
More importantly, eXpect does not reason about 8 of the 13 (P3,
P4, P6, P7, P9, P10, P11, P13) XRAY interconnect properties.

VIII. CONCLUSION

XRAY systematically analyzes the security of AXI inter-
connects, uncovering 41 vulnerabilities across 7 interconnects,
including 22 that were previously unidentified. We selected 5
of these vulnerabilities to develop 3 end-to-end exploits.

(1]
[2]

[3]

[4]

[3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

AMBA AXI Protocol Specification, ARM, July 2019, ARM IHI 0022G.
F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo, “Is
your bus arbiter really fair? Restoring fairness in axi interconnects for
fpga socs,” ACM Transactions on Embedded Computing Systems (TECS),
2019.

AMD Xilinx, “AXI Xilinx Firewall,” Accessed: Sept. 21, 2024. [On-
line]. Available: https://www.xilinx.com/products/intellectual-property/
axi-firewall.html.

Cadence, “AXI Cadence Formal Verification IP,” Accessed: Sept. 21,
2024. [Online]. Available: https://www.cadence.com/en_US/home/tools/
system-design-and- verification/verification-ip/formal- vip/amba-arm.
html#axi-protocols.

, “AXI Cadence Simulation Verification IP,” Accessed: Sept.
21, 2024. [Online]. Available: https://www.cadence.com/en_US/home/
tools/system-design-and- verification/verification-ip/simulation- vip/amba/
amba-axi.html,

AMD Xilinx, “AXI Xilinx Verification
21, 2024. [Online]. Available:
intellectual-property/axi-vip.html.
——, “AXI Xilinx interconnect implementation,” Accessed: Sept.
21, 2024. [Online]. Available: |https://www.xilinx.com/products/
intellectual-property/axi_interconnect.html.

——, “AXI Xilinx smartconnect implementation,” Accessed: Sept.
21, 2024. [Online]. Available: |https://www.xilinx.com/products/
intellectual-property/axi_smartconnect.html.

Pulp Platform, “Open Source Platform,” Accessed: Sept. 21, 2024.
[Online]. Available: https://www.pulp-platform.org/.

Dan Gisselquist, “Using a formal property file to verify an AXI-lite
peripheral,” Accessed: Sept. 21, 2024. [Online]. Available: https://zipcpu.
com/formal/2018/12/28/axilite.html.

Z. Jiang, K. Yang, N. Fisher, I. Gray, N. C. Audsley, and Z. Dong, “Axi-
ic™ : Towards a real-time axi-interconnect for highly integrated socs,”
IEEE Transactions on Computers, vol. 72, no. 3, pp. 786-799, 2023.
PULP, “AXI PULP crossbar implementation,” Accessed: Sept. 21, 2024.
[Online]. Available: https://github.com/pulp-platform/axi/blob/master/src/
axi_xbar.svl.

M. Zonta-Roudes, A. Meza, N. Hinderling, L. Deutschmann, F. Restuccia,
R. Kastner, and S. Shinde, “eXpect: On the Security Implications of
Violations in AXI Implementations,” in ACM/IEEE ICCAD, 2024.

AXI Full Crossbar, “AXI Full Crossbar ZipCPU implementation,” Ac-
cessed: Sept. 21, 2024. [Online]. Available: https://github.com/ZipCPU/
wb2axip/blob/master/rtl/axixbar.v,

AMD Xilinx, “Vivado,” Accessed: Sept. 21, 2024. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html.

——, “Vivado Axi Peripheral Creation,” Accessed: Sept. 21,
2024. [Online]. Available: |https://www.xilinx.com/video/hardware/
creating-an-axi-peripheral-in-vivado.html.

——, “VCUI118,” Accessed: Sept. 21, 2024. [Online]. Available: https:
/Iwww.xilinx.com/products/boards-and-kits/vcul 18.html.

——, “ZCU102,” Accessed: Sept. 21, 2024. [Online]. Available: https:
/Iwww.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.

——, “Vitis,” Accessed: Sept. 21, 2024. [Online]. Available: https:/www.
amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html.

——, “AXI Xilinx Protocol Checker,” Accessed: Sept. 21, 2024. [On-
line]. Available: https://www.xilinx.com/products/intellectual-property/
axi_protocol_checker.html.

F. Restuccia and R. Kastner, “Towards zero-trust hardware architectures
in safety and security critical system-on-chips,” in Real-Time Intell. Edge
Comput. Workshop (RAGE) Co-Located 61th Design Autom. Conf.(DAC),
2024.

A. Meza, F. Restuccia, R. Kastner, and J. Oberg, “Safety verification of
third-party hardware modules via information flow tracking,” in Real-
Time Intell. Edge Comput. Workshop (RAGE) Co-Located 59th Design
Autom. Conf.(DAC), 2022.

F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, “Axi
hyperconnect: A predictable, hypervisor-level interconnect for hardware
accelerators in fpga soc,” in ACM/IEEE DAC, 2020.

F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and verification
framework for safe and secure soc access control,” in ACM/IEEE ICCAD,
2021.

T. Benz, A. Ottaviano, R. Balas, A. Garofalo, F. Restuccia, A. Biondi, and
L. Benini, “Axi-realm: A lightweight and modular interconnect extension

IP,” Accessed: Sept.
https://www.xilinx.com/products/!

[26]
(271

[28]

[29]

(30]

(31]
[32]

[33]

for traffic regulation and monitoring of heterogeneous real-time socs,” in
IEEE DATE, 2024.

N. Fern, I. San, C. K. Ko¢, and K.-T. Cheng, “Hardware trojans in
incompletely specified on-chip bus systems,” in IEEE DATE, 2016.
ARM, “Trustzone,” Accessed: Sept. 21, 2024. [Online]. Available: https:
/Iwww.arm.com/technologies/trustzone-for-cortex-a.

K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, ‘“Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in ACM/IEEE ICCAD,
2018.

S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “Directfuzz: Automated test generation for rtl designs using
directed graybox fuzzing,” in ACM/IEEE DAC, 2021.

R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for validating the security of processor
designs,” in MICRO, 2018.

K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in IEEE S&P, 2016.

C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating uci: Building
stealthy and malicious hardware,” in IEEE S&P, 2011.

G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “HardFails: Insights into
Software-Exploitable hardware bugs,” in USENIX Security, 2019.

M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an untrusted computing base: Detecting and removing
malicious hardware automatically,” in IEEE S&P, 2010.

Synopsys, “AXI Synopsys Verification IP,” Accessed: Sept. 21,
2024. [Online]. Available: |https://www.synopsys.com/verification/
verification-ip/amba/amba-axi.html,

https://www.xilinx.com/products/intellectual-property/axi-firewall.html
https://www.xilinx.com/products/intellectual-property/axi-firewall.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/verification-ip/formal-vip/amba-arm.html#axi-protocols
https://www.cadence.com/en_US/home/tools/system-design-and-verification/verification-ip/formal-vip/amba-arm.html#axi-protocols
https://www.cadence.com/en_US/home/tools/system-design-and-verification/verification-ip/formal-vip/amba-arm.html#axi-protocols
https://www.cadence.com/en_US/home/tools/system-design-and-verification/verification-ip/simulation-vip/amba/amba-axi.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/verification-ip/simulation-vip/amba/amba-axi.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/verification-ip/simulation-vip/amba/amba-axi.html
https://www.xilinx.com/products/intellectual-property/axi-vip.html
https://www.xilinx.com/products/intellectual-property/axi-vip.html
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi_smartconnect.html
https://www.xilinx.com/products/intellectual-property/axi_smartconnect.html
https://www.pulp-platform.org/
https://zipcpu.com/formal/2018/12/28/axilite.html
https://zipcpu.com/formal/2018/12/28/axilite.html
https://github.com/pulp-platform/axi/blob/master/src/axi_xbar.svl
https://github.com/pulp-platform/axi/blob/master/src/axi_xbar.svl
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axixbar.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/axixbar.v
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/video/hardware/creating-an-axi-peripheral-in-vivado.html
https://www.xilinx.com/video/hardware/creating-an-axi-peripheral-in-vivado.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vitis.html
https://www.xilinx.com/products/intellectual-property/axi_protocol_checker.html
https://www.xilinx.com/products/intellectual-property/axi_protocol_checker.html
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.synopsys.com/verification/verification-ip/amba/amba-axi.html
https://www.synopsys.com/verification/verification-ip/amba/amba-axi.html

	Introduction
	Background
	AXI Overview
	Interconnects

	Motivation
	Xray overview
	Xray Tool
	Traffic Generator
	Xray Checker

	Evaluation
	Setup
	Summary of Vulnerabilities
	Exploiting Vulnerabilities

	Related Work
	Conclusion
	References

