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Abstract

Most managed runtime environments abandoned attempts to miti-
gate speculative execution attacks between different trust domains
within the same process (in-process), in favor of using process
isolation to confine attackers.

Indeed, many code-generation based mitigations focused on spe-
cific variants of speculative execution vulnerabilities. This makes
design-level defenses with clear guarantees, such as process iso-
lation, a more attractive solution, despite the challenges that may
arise while adopting a multi-process architecture.

We present MONOCLE, a fundamental runtime code-generation
approach that mitigates speculative execution attacks in-process.
MoNoctLE is based on software fault isolation (SFI) and can be
validated at the machine code level to ensure all potential known
Spectre gadgets are covered. Benchmarks show an overhead of only
20% over the baseline, on average, and an improvement of >4.1x
when compared to using memory fences, a comprehensive baseline
speculative execution barrier-based mitigation strategy.
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1 Introduction

With the advent of speculative execution attacks, managed runtime
environments that execute potentially untrusted code written in a
higher-level language such as Java, Python or Javascript, suddenly
faced an entirely new threat model: even in absence of any regular
bugs in the runtime, speculative execution side channels now allow
bypassing the runtime’s memory safety guarantees. Meltdown-style
vulnerabilities [25] are acknowledged as hardware defects when
transient execution continues after fault conditions. In contrast,
Spectre-style vulnerabilities [23] enable transient execution of in-
structions after a misprediction in the CPU pipeline, which requires
a mitigation in software.

A large body of research has investigated defenses, with many
focusing on particular variants such as Spectre PHT, including static
analysis and formally verified approaches [7]. However, they do
not quite meet the needs of Just-in-Time (JIT) compilation, which is
substantial to the performance of managed runtime environments.
With JIT compilation, machine code for repeatedly traversed code
paths within a program implemented in a higher level program-
ming language is generated dynamically at runtime. Attackers can
leverage JIT compilation to introduce (native) code gadgets that
implement speculative execution side-channel attacks at runtime.

In this paper, we investigate the challenges and opportunities
specific to JIT compilation. On one hand, time-consuming static
analysis or formal verification of the produced machine code ham-
pers runtime performance, as does comprehensive use of specula-
tive execution barriers, which flush memory and instruction caches
at specific program points (i.e., relevant loads and branches) to dif-
fuse transient execution attacks. On the other hand, access patterns
of JIT compiled code are typically limited to a specific subset of the
address space which permits strong restrictions on defined access
ranges in memory.

Considering the browser scenario, where a Javascript engine is
used to execute scripts of individual web sites, applying process
isolation sacrifices density, as the separate processes require as
many Javascript engines as web pages of different trust domains
simultaneously displayed in the browser [32]. Also process isolation
has been shown to be susceptible to attacks when components must
be co-located, either due to a design or performance constraint (e.g.,
consolidating processes after reaching a hard limit) [1]. If process
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isolation is undesirable, for example because of the memory or
inter-process communication overhead, mitigations are required
to isolate untrusted programs in a single process (intra-process
isolation).

We present MONOCLE, a compiler framework that implements
secure intra-process isolation for JIT compilers. MONOCLE is based
on a straightforward flavor of Software-based Fault Isolation (SFI)
applied comprehensively during compilation. The access checks
implemented by its machine code patterns are also executed during
speculative execution, effectively mitigating speculative execution
attacks. To ensure MONOCLE is working correctly, we extended the
high performance Binsweep [30] binary static analyzer with an
ad-hoc policy to validate the final compilation result. Being able to
validate the compilation result significantly increases the overall
protection level. While production runtimes are typically subject to
extensive test suites to ensure their proper operation, speculative
execution attacks are hard to cover by regular regression tests. In
fact, real world scenarios have shown how flaws in the mitigation
deployed lead to exploitable Spectre gadgets [22]. Verifying the
actual machine code produced by the compiler before execution
can ensure that no known gadgets are present.

We make the following contributions in this paper:

e MoONOCLE, a novel and comprehensive approach to mitigate
speculative execution attacks that leverage JIT compilation
in managed runtimes. We implement MoNOCLE on GraalVM
and its JIT compiler that is used by language runtimes for
Javascript, Python and Ruby among others.
Validation of the compilation result at runtime. Our binary
analysis validates that the final compilation result is fully
protected by MoNocLE and is lightweight enough to be used
in production alongside runtime compilation.
e An evaluation of the performance overhead of MONOCLE
compared to other mitigations based on speculative execu-
tion barriers on benchmarks in multiple languages.

2 Background

2.1 Speculative Execution Attacks

Attacks relying on speculative execution have been discovered
and proven possible in recent years. In 2018 Lipp et al. [25] found
Meltdown and Kocher et al. [23] unveiled Spectre. Meltdown and
Spectre are two classes of attacks exploiting speculative execution.
In both cases, exploits using these vulnerabilities can leak arbitrary
memory locations, in some cases also across address spaces. In the
next paragraph, we will summarize the main versions of Spectre,
following the naming suggested by Cannella et al. [5].

Spectre PHT. This initial variant of Spectre relies on poisoning the
Pattern History Table (PHT) to control conditional branch predic-
tion. In particular, the goal is to force controlled misprediction to
bypass logical access control mechanisms, such as boundary checks,
implemented in software with conditional branches. After a phase
where the conditional branch predictor, and consequently the PHT,
are mistrained, a second phase exploits speculative execution to
read past a boundary check. Notably, an attacker can bypass any
conditional they can (mis)train in addition to boundary checks.
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Spectre BTB. This variant relies on poisoning the Branch Target
Buffer (BTB) to control the location where indirect branches will
land. Compared to Spectre PHT, this variant is more powerful
in real-world applications since it can steer the control flow in
arbitrary positions making it possible to exploit and chain together
multiple gadgets already present in the code, in a Return-oriented
Programming (ROP) fashion. Subsequently the same side-channel
technique as before is used to extrapolate the secrets.

Spectre RSB. This variant relies on underflowing the Return Stack
Buffer (RSB). The RSB can only store the last N calls, where N
depends on the size of the buffer itself. However, starting from Intel
Skylake, CPUs fall back to the BTB if the RSB is empty. This allows
using returns to mount Spectre BTB-like attacks.

Spectre STL. This version of Spectre does not exploit control flow
speculation. Instead, it exploits data speculation. CPUs can specu-
late on data dependencies, in particular, some loads can be executed
speculatively before knowing if they are dependent on a previous
store. An attacker can exploit this by speculatively skipping a store
and accessing a value that was never meant to be possible to read.
Later, with the help of a usual cache side-channel, the attacker
infers the speculatively read value.

Mistraining. As discussed, the first three variants need to mistrain
branch predictors. This mistraining can occur in four different
modes [5]:

e Executing the victim branch in the victim process (same-
address-space in-place).

e Executing a congruent branch in the victim process (same-
address-space out-of-place). Where congruent refers to a
branch that maps to the same entry of the buffer (PHT, BTB,
RSB) to be poisoned.

e Executing a shadow branch in a different process (cross-
address-space in-place). Where shadow refers to a branch
at the same address as the branch to be mistrained, but in a
different address space.

e Executing a congruent branch in a different process (cross-
address-space out-of-place).

Not all the mistraining techniques are always exploitable. For ex-
ample, cross-address-space attacks on managed languages, such as
JavaScript, have not been explored yet to the best of our knowledge.

Side Channels. Side channels are a key component of speculative
execution attacks. The microarchitectural changes that occur dur-
ing the speculation windows cannot be observed directly, since
the rolled-back instructions do not leave traces in the architectural
state of the CPU. However, the effects of speculatively executed
instructions can be observed through side channels. Most known
attacks abuse cache-based side channels to leak information as in
the original Spectre attack [23]. However, attacks relying on MDS-
based covert channels [4, 33], port contention-based covert chan-
nels [3, 11] as well as contention on Intel CPUSs’ ring buffers [31]
have been proven possible.

2.2 Software Fault Isolation

Software Fault Isolation was first presented in 1993 by Wahbe et
al. [37] for RISC architectures. Its main purpose is the creation of
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Operating System Process

*B Managed Language Trusted Memory

Untrusted High Runtime Native Code Heaps
Level Code
script. {js,py,rb}

JIT Compiler [TLy| Untrusted Compiled Code
mov rax, [rbx + 0x16]

Figure 1: Our threat model describes the scenario of a man-
aged runtime that is co-located with trusted application code
in the same process. While interpretation of higher-level
(i.e., memory safe) untrusted code by the managed runtime
is assumed to be safe with respect to speculative execution,
the addition of a JIT compiler for performance benefits can
potentially allow an attacker to introduce speculative execu-
tion gadgets through JIT compiled native code.

distinct fault domains in the same address space. The goal is to
allow faster interaction between domains to avoid using remote
procedure calls, while strictly isolating memory so that faults in one
domain cannot influence another domain. The original idea pro-
posed to section the address space in contiguous memory regions
and to restrict each memory modification to a specific domain. The
restriction is achieved by masking the address to be used with a
value that represents the index of the correct domain.

This seminal work has been extended to work in a CISC archi-
tecture by McCamant et al. [26].

2.3 Binsweep

Binsweep [30] is an extensible static binary analysis tool for x86
that works at the machine code level. It works under the assumption
that all valid entry points in the code are marked with a specific in-
struction (ENDBR64). Binsweep uses a combination of linear sweep
and recursive descent algorithms to disassemble an analyzed binary
and reconstruct Control-flow Graph (CFG) from each entrypoint in
the machine code. Binsweep guarantees that all runtime-reachable
instructions, which conform to Binsweep’s software CFI scheme,
are then decoded at static analysis time. Binsweep provides an inter-
face to implement custom security policies that are applied to the
instruction stream of CFGs reconstructed from valid entrypoints.

3 Threat Model

At a high level, our threat model describes the introduction of un-
trusted machine code into a process by virtue of a JIT compiler that
processes untrusted code supplied in a higher-level language. Fig-
ure 1 shows an overview of our threat model. The outer boundary
is a process with a corresponding virtual address space. Attack sce-
narios that involve crossing this boundary are outside the scope of
this paper. Within the process, the trusted computing base consists
of the code representing the main application logic, as well as a
managed runtime for a higher-level language.

We assume that the trusted computing base contains no ex-
ploitable gadgets for speculative execution attacks. This is a rea-
sonable assumption given that static analysis tools that identify
such gadgets are available [35] and code generation mitigations
have been deployed in widely used compiler toolchains [6, 39]. As
a result, the managed runtime is assumed to be able to securely
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Figure 2: Both the trusted application code and the untrusted
code lowered by JIT compilation to machine code share the
same address space. A successful speculative execution attack
creates an arbitrary memory read primitive that allows the
untrusted code to access a secret in the application’s heap.
We assume a memory-safe runtime environment and a JIT
compiler that allows rewriting untrusted code to restrict the
code’s access (including speculative reads) to the managed
runtime heap.

contain interpreted execution of untrusted code with respect to
speculative execution attacks.

The addition of a JIT compiler as part of the managed runtime
introduces an additional attack surface for speculative execution
attacks. Whereas the compiler itself is trusted, the machine code
resulting from runtime compilation of untrusted code provided in
a higher level language to the managed runtime, is not. An attacker
controlling the untrusted code that is input to the JIT compiler has
a degree of control over the resulting machine code that allows
it to introduce speculative execution gadgets to the process. Both
the trusted application code as well as the untrusted JIT compiled
code share the same address space (Figure 2). Speculative execution
attacks that allow the JIT compiled code to access a secret in the
same address space are captured by our threat model.

An example in which the presented threat model reflects a com-
mon real scenario is a cloud-based service that embeds and runs
user-provided code on the server as well as JIT compiling JavaScript
provided by third-party websites in a web browser.

3.1 Scope of the Mitigation

The proposed mitigation aims at addressing speculative execution
attacks belonging to the Spectre class of attacks. Specifically, we
propose a mitigation for the three most known Spectre-like attacks,
namely: Spectre PHT, Spectre BTB, and Spectre RSB. In subsec-
tion 6.1 we will discuss the effectiveness of the proposed mitigation
also for Spectre STL, despite not being optimized for it.
Speculative accesses by untrusted code to any parts of the man-
aged runtime heap as depicted in Figure 2 are explicitly allowed by
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Table 1: A comparison of MoNoOCLE with existing approaches.
Performance is graded from low (O) to high (®). Support for
runtime compilation (RT), validation (Val), and mitigations
against Spectre PHT, BTB, and RSB attacks are reported.

Perf RT Val PHT BTB RSB

Fences O v / v v v
Ultimate SLH[44] © x x v X X
Venkman [34] © x v «x v v
Blade [36] ® x x v x X
007 [38] ® x x v x X
Swivel [28] ©O v x v 4
MoONOCLE o v / v v v

our threat model, as the data on the managed runtime heap just
captures the state of the executed untrusted code itself.

Meltdown-class attacks [25], are considered out of scope, as they
are better addressed at the microarchitectural and firmware levels,
and can be patched with microcode updates. We will further discuss
them in section 7.

Finally all attacks relying on Spectre gadgets found in trusted
code are out of scope. We assume that trusted code can be checked
ahead of time as part of the development process, using, e.g., exhaus-
tive static analysis and potential gadgets removed consequently.

3.2 Challenges and Approach

In this section, we describe the challenges posed by our threat
model, in perspective with other software-based Spectre mitiga-
tions. Table 1 presents a comparable subset of mitigations extracted
by Cauligi et al. [8]. As shown in this table, MONOCLE mitigates
all the main versions of Spectre while prior approaches usually
target only a subset of Spectre attacks. In addition, our threat model
requires applying the mitigation at runtime, and ideally minimizing
any performance overhead imposed on JIT compilation time. JIT
introduces complexities not found in Ahead-of-Time (AOT) compi-
lation, as the final binary code is generated dynamically at runtime,
constraining the potential for static analysis and control during
mitigation deployment. Furthermore, static analysis in this context
is complicated by the inability to access a complete view of the pro-
gram, as JIT compiles distinct sections of the program at different
points in time.

Finally, our proposed mitigation based on compiler transforma-
tion can be verified through lightweight static analysis, as presented
in subsection 4.4. MONOCLE combines the theoretical soundness
of an SFI-based approach with a practical verification step, which
guarantees the correctness of the compiled code. As a result, any
potential bug in our compiler pass that limits SFI will cause static
analysis to reject machine code produced during JIT compilation.
Table 1 shows that validation of the mitigation is hardly found in
comparable solutions.

4 Design

Figure 3 shows a high-level overview of how MONOCLE integrates
into the JIT compilation process of a managed runtime. Untrusted
code that has been executed repeatedly by the interpreter is picked
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Figure 3: How MoNOCLE integrates into the execution flow
of a managed runtime: hot untrusted code is instrumented
at compile time with address masking and memory barriers.
The compiled code is then only installed after successfully
passing custom static analysis validation to ensure the ab-
sence of speculative gadgets.

up by the JIT compiler. MONOCLE then applies a mixed strategy:
relevant memory read accesses are instrumented to be scoped to
their permitted memory region. If scoping is not possible because
the permitted target region cannot be determined, MoNocLE falls
back to using speculation barriers to ensure no speculative access
that deviates from the architectural target is performed. After com-
pilation, a static binary analysis step ensures that the mitigation has
been correctly applied. On success, the compiled machine code is
installed and used instead of the interpreter. If the verification fails,
Monoctek falls back to the interpreter. Figure 4 summarizes the
memory model as well as the possible accesses to process memory.
Moreover, it schematizes the proposed mitigation techniques.

4.1 Memory Model

Managed runtimes maintain a typically contiguous memory region
as the runtime managed heap. This runtime managed heap contains
all the objects and thus state of the untrusted code that is executed
by the runtime. Heap objects are then referenced as offsets from
the runtime managed heap base [17, 40]. The memory layout of the
address space thus clearly separates the untrusted runtime managed
heap from the trusted main application memory, which may contain
sensitive data. At (JIT) compilation time, both the location of the
runtime managed heap base as well as its permitted maximum size
are available in well-known locations. This memory model and
way of referencing heap objects enables us to use efficient scoping
of memory accesses. This is in contrast to mitigation approaches
developed for conventional ahead-of-time compilation such as the
address or value poisoning speculative load hardening techniques
implemented in LLVM [6, 44].

4.2 Address Masking

MonocLE uses address masking as a primary technique to scope
memory accesses. Address masking reinforces the boundary con-
ditions for accesses to the runtime managed heap to also apply
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during speculative execution. With address masking, we can pre-
vent memory accesses outside the runtime managed heap while still
permitting speculative execution and thus impose significantly less
performance impact compared to mitigations based on speculative
execution barriers.

The technique is a reinterpretation of SFI. We use the same con-
cept of address masking proposed by Wahbe et al. [37], however we
tailor our approach to specifically mask memory accesses deemed
critical from a security perspective. From a correctness point of
view, the accesses are already in that memory region, indeed, we
are not using SFI to create the logical separation per se. Thus, we
can avoid the need for cross-region APIs based on SFI, removing a
clear downside of a standard implementation of SFI.

The following pseudocode shows how a memory access is hard-
ened using address masking:

// regular access
object = read(untrusted_memory_base + object_off)

// speculative execution safe access

mask = load(untrusted_memory_size)

unsafe_off = load(object_off)

safe_off = and(mask, unsafe_off)

object = read(untrusted_memory_base + safe_off)

The read instruction in this pseudocode represents a data memory
access, whereas the load instruction does not and corresponds to
accessing an immediate or value stored in a register.

The regular read of an object from the heap using base and offset
is instrumented. First, the size of the runtime managed heap and
the unsafe offset are loaded. Do note that the size of the runtime
managed heap is a compile time constant for JIT compilation. Then
the size of the runtime managed heap is used to mask the unsafe
offset and scope it to the heap size, converting it to a speculative-
execution safe offset. This safe offset is then used in a final step to
read the object.

4.3 Memory Barriers

Despite the predominant occurrence of memory accesses within
the runtime managed heap memory region in runtime-compiled
code, the scope of security-critical memory accesses is more ex-
tensive. In particular, accesses beyond the confines of the runtime
managed heap can be allowed, to enable tighter integration with a
trusted application that requires accessing certain data structures
in unmanaged memory outside the heap.

Furthermore, instances exist where the compiler cannot ascertain
the location of a memory access, potentially falling outside the
runtime managed heap. Masking is not possible in these cases since
it will break the correctness of the program by incorrectly forcing
the address onto the runtime managed heap.

To address these security-critical memory accesses that defy
masking, we employ memory barriers, such as x86 1fences, to
block speculative execution. Our approach allows a more precise
emission of memory barriers on top of memory accesses whose
location does not permit masking, allowing speculation to proceed
further in most cases compared to previous attempts at mitigating
Spectre by extensively employing memory barriers proposed by
Intel [19]. As we will further discuss in subsection 6.2, this strategy
exhibits a more nuanced impact on performance.
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4.4 Static Binary Analysis

Before installation of a runtime compiled method, a binary machine
code analysis statically checks the security guarantees of a runtime
compiled method. We based our binary analysis on the insights
presented in Binsweep [30]. As reconstructing a control-flow graph
is a significant challenge when analyzing machine code, the analysis
assumes that all entry points to the method from the outside, as
well as indirect branch targets are identified by the compiler with a
specific marker instruction that is a semantic NOP when executed.
This also eliminates the need for introducing heuristics to handle
variable-length instructions decoding, as we can precisely trace all
permissible code paths, ensuring the correctness of our decoding
process.

Moreover, in our threat model we do trust the compiler, thus we
can assume that bogus indirect jumps to non-marked entry points
are not present in the produced JIT compiled code. As a result,
we can lower the constraints around Control-flow Integrity (CFI)
imposed in Binsweep, where indirect jumps and returns must be
patched to follow a specific pattern that allows the tool to statically
check that a given binary adheres to the CFI requirements.

Disassembling. Binsweep [30] uses two different phases, during
the decoding process, to reconstruct the CFG: linear sweep and
recursive descent. In the former, a byte-to-byte scan is employed to
locate all the valid entry points. In the latter, disassembly from each
entry point is started. This phase follows each direct branch while
assuming that all the indirect branches found, at runtime, can only
target a valid entry point. As already mentioned, Binsweep will
enforce this through patterns on top of each indirect branch and by
disabling ret instructions, while we can assume that all indirect
branches are emitted correctly by the compiler. For this reason, we
do allow return instructions.

The disassembly results are organized in a control flow graph
with instruction granularity. Each instruction, among the others,
holds the information regarding its class which identifies the oper-
ation code, and its operands.

Verification. The verification phase checks each memory access
whose target is calculated at runtime. This involves traversing
the control-flow graph and inspecting each instruction. When a
relevant memory access is encountered, the verifier conducts a
series of checks to determine whether to permit the access. These
checks operate on three fronts: firstly, the verifier examines whether
the memory access is protected by address masking; secondly, it
assesses whether it is safeguarded by a memory barrier; lastly,
it conducts a Spectre gadget check to ensure that the memory
access cannot be exploited as part of a Spectre gadget. If none
of the checks succeed, the memory access is considered unsafe. A
failure in machine code verification will block the installation of the
corresponding runtime compiled method, reverting the execution
to an interpreted mode.

To determine if address masking is applied, we check for the
presence of the masking pattern detailed in subsection 4.2 on top of
the instruction being analyzed. If that check fails, then the verifier
tries to locate an 1fence preceding the critical instruction. In both
scenarios, the control-flow graph facilitates the check of all the
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Figure 4: (a) Process memory layout for a set of untrusted runtime managed heaps in contiguous memory within a trusted
process. (b) A non-mitigated scenario where memory accesses (solid lines) correctly target untrusted managed memory or a
mapped region in native (i.e., unmanaged) process memory. However, speculative accesses (dashed lines) generated by both
types of memory access can disclose a secret value that should not be read. (c) Our proposed mitigation in practice. Memory
accesses are hardened and, as a result, speculative accesses generated from on-heap accesses are masked to untrusted memory
while memory barriers disable speculation caused by native accesses.

paths leading to the critical instruction. This examination is done
efficiently by backward traversal from the instruction itself.

Furthermore, within the verification process for both address
masking and memory barrier checks, interleaved instructions be-
tween the anticipated pattern and the security-critical instruction
are allowed. These interleaved instructions might result from opti-
mization phases conducted by the compiler or the code scheduler
during the emission of code blocks. Such instructions can be, for
example, pushes that the compiler emits for register spilling as
well as nops used for padding. To address this, the verifier incorpo-
rates a register tracker. This tracker differentiates between registers
holding information relevant for the masking operation and those
that are either unused or considered safe. The register tracker only
considers entire registers, it does not distinguish between parts of
a single register, i.e. rax and eax are considered the same register.
The verifier considers interleaved instructions as unsafe if they
touch any register used by a masking operation.

5 Implementation

We chose to implement MoNocLE on Oracle GraalVM 23.1 for
the x86_64 architecture. GraalVM is a polyglot managed runtime
environment that supports execution of multiple popular languages
such as Javascript, Python and Ruby. Multiple instances of a runtime
environment can be embedded into a trusted host application and
execute in a single process as so-called isolates. An isolate captures
the state of an individual runtime on a dedicated managed runtime
heap. Object references are represented as offsets from the heap base
(“compressed references”). For further detail on GraalVM, please
refer to Appendix A.

In order to execute untrusted code, the host application creates
an instance of a language runtime in the form of an isolate. This
scenario reflects the setup described in our threat model.

The V8 Javascript engine uses a similar approach to support
isolates and reference heap objects [17]. Objects can be referenced
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either through offsets from the heap base or through pointer table
indirection if they reside outside the runtime managed heap. As
such, MoNocCLE could also be implemented on V8, however, we
chose GraalVM for its extensive language support. Furthermore,
GraalVM’s graph-based intermediate representation particularly
lends itself to implement MONOCLE (see subsection 5.3).

5.1 Address Masking

GraalVM maintains a reference to the base of the managed run-
time heap in a dedicated, reserved register (r14 on x86_64). We
generalize the addressing mode of x86_64, typically represented
as base+(indexxscale+displacement), to base+offset. Subse-
quently, we employ a bitwise AND operation to mask the offset,
forcing it to remain within the predefined region. Notably, the heap
base consistently serves as the base in the address. In the next para-
graphs we present the patterns used to implement address masking.
Then we will focus on the compiler changes needed to adopt the
presented patterns.

Compressed References. The following snippet shows how a normal
memory access using compressed references, such as mov reg,
[r14 + offset], is transformed when memory masking is applied:

lea regl, [offset]
mov reg2, MASK

and regl, reg2

mov regl, [r14 + regl]

The code loads the offset of the value and then, using a mask and a
bitwise and, forces the offset to be inside the isolate heap. The mask
needs to be loaded separately since it can be bigger than 32 bits,
making it impossible to be loaded directly as an operand of the and
instruction. By default, the mask is set to @x7FFFFFFFFF, matching
the managed heap default size, however the implementation is
agnostic to the mask and size of the managed heap, which is a
runtime configuration.
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Uncompressed References. Memory accesses can also be done using
uncompressed references, i.e., regular pointers, even if the com-
pressed references feature is enabled. In particular, the Graal com-
piler might optimize and decompress the reference once and later
keep the uncompressed value cached in a register. Moreover, only
object references that need to be stored are compressed: freshly
instantiated objects can be used directly as uncompressed values.
The compiler then needs to adapt the address masking pattern to
accommodate this case. Uncompressed references still point to the
isolate heap, thus we can derive the compressed offset starting
from the uncompressed one and knowing the heap base. The fol-
lowing pattern shows how address masking is applied in case of
uncompressed references:

lea regl, [address]

sub regl, ri4

mov reg2, MASK

and regl, reg2

mov regl, [r14 + regl]
The same considerations for the last three instructions in the case of
compressed references also hold here. However, the first load does
compute the full address rather than just the heap offset. Conse-
quently, we need to subtract the isolate heap base to obtain the offset
that we can later mask. In the end, a memory access to the original
memory location is emitted based on the compressed addressing
mode (r14 + offsets).

Image Heap. GraalVM native image refers to the managed runtime
heap as the “image heap”. With isolates and compressed references
enabled, the address of constant objects on the image heap can be
loaded with a load effective address (1ea) instruction directly com-
bining the heap base with the given offset. This involves combining
the heap base with the given offset, and the resulting address is
used for retrieving the desired object. In this scenario, the masking
is applied to the offset employed by the lea instruction, without
altering the actual memory access. Additionally, the lea instruction
incorporates the decompression mechanism, necessitating a shift
of the offset by three positions due to the byte alignment of objects.
The default mask now conveniently fits within the and instruction’s
second operand. The following snippet presents the pattern used
to mask image heap constant loading:
and reg, MASK

lea reg, [r14 + reg x 8]
mov reg, [reg]

Masked Memory Accesses. In both the compressed and uncom-
pressed scenarios, we apply masking to all memory accesses that
could result in a memory load, thus preventing potential informa-
tion leaks. This applies universally across all x86_64 instructions
dereferencing a memory location as a source operand, rather than
being restricted solely to the mov instruction. In contrast, instruc-
tions accessing memory for the purpose of storing data are not
allowed to execute out-of-order by the CPU. This precaution is
taken to maintain memory coherence among different cores shar-
ing the same caches, thereby preventing these instructions from
serving as Spectre gadgets.

Based on our threat model, certain registers are considered
trusted as their value is determined by the runtime and cannot
be controlled by an adversary. In particular this includes the heap

1194

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

base register, r14, as well as the stack pointer, rsp. If only trusted
registers are involved in a memory access, this access does not have
to be masked. This is rarely true for accesses involving the heap
base, which is always combined with an untrusted offset. However,
accesses to the stack are different: the stack frame of a compiled
method is set up by a trusted function prologue generated by the
compiler. All stack based accesses in the compiled method are then
performed using offsets that are compile-time constants that by
design cannot address any data outside the current stack frame.

5.2 Compiler Extension

This section covers the implementation details of the compiler
extension, which extends the Oracle GraalVM codebase by roughly
1,200 Source Lines of Code (SLoC).

Memory Accesses. The Graal compiler represents a memory loca-
tion using AddressNodes, which serve as inputs to nodes that ac-
cess memory, such as ReadNodes. In the low-tier stage, these nodes
are transformed by the lowering phase to a machine-dependent
representation, such as AMD64AddressNode.

To seamlessly incorporate the proposed mitigations, we intro-
duce a new node type: AMD64MaskedAddressNode. This node takes
responsibility for emitting the appropriate mitigation strategy,
whether it be address masking or a memory barrier. Additionally,
we extend the AddressLoweringByNodePhase phase to convert
AddressNodes and their specializations into instances of the newly
created node. This enhancement enables precise filtering during
the phase, allowing us to discern which nodes require mitigation.
We avoid transforming the memory accesses into a masked mem-
ory access for certain categories of original AddressNode users, in
particular:

e nodes reading from reserved register (except for r14);

e nodes that do not use the data stored at the target location,
such as PrefetchAllocate or Write nodes. These nodes,
due to their nature, do not pose a risk of constructing Spectre
gadgets, as they interact with memory without revealing the
stored values, preventing any potential information leaks.

The newly introduced nodes are anchored on top of their users.
Anchoring not only ensures correctness in the placement of safe-
points for deoptimization and garbage collection but also facilitates
the verification process presented in subsection 4.4. By anchoring
these nodes, we ensure their proximity during code emission and
block scheduling. This spatial relationship facilitates recognizing
certain patterns during static analysis, enabling more straightfor-
ward and stringent assumptions. This, in turn, contributes to the
overall simplicity and robustness of the static analysis process.

During emission, each AMD64MaskedAddressNode dynamically
determines the pattern to be added to the memory access. Initially,
the node checks whether a masking pattern should be emitted by
inspecting the memory location identity of the base composing
the address. Leveraging this information, which is normally used
to check if different memory accesses might interfere with each
other, allows us to identify values that must reside on the isolate
heap by verifying that the current location identity is not of type
OFF_HEAP_LOCATION or of type GC_CARD_LOCATION. For addresses
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referencing memory outside the isolate heap, the same node em-
ploys memory barriers instead of a masking pattern, ensuring that
at least one of the security measures is in place.

Masking of image heap constants occurs external to the node.
When such masking is required, we act on the function responsible
for emitting the uncompressed reference, housing the lea operation
detailed in subsection 5.1. If the mitigation is enabled, an additional
and instruction is emitted to perform masking.

Furthermore, we address FloatingReadNodes separately. In first-
tier compilation, the phase fixing those nodes is not enabled to save
on compilation time. As a consequence, the masking technique
cannot be applied since the nodes are floating, and it is not possible
to anchor the new masked node on top of a floating node. We
emit a memory barrier on top of such floating memory reads. This
approach is not necessary during second-tier compilation, where
all the optimizations are available.

We manually emit memory barriers in specific locations inside
the compiler. For instance, ComputedIndirectCall directly makes
use of AMD64Address eluding the modified lowering phase. The
mitigation triggers the direct emission of an 1fence immediately
preceding the security-critical memory access. This meticulous
approach ensures the timely insertion of memory barriers where
required, fortifying our mitigation strategy.

Assembler Interception. After the lowering phase, which we ex-
tended to implement the core of MoNOCLE, the compiler can still
create and emit new memory reads. These accesses are directly
emitted by the assembler and do not modify the compilation graph.
Most of those reads are crafted during the emission of a node, as
part of specific intrinsics or optimizations. Since they are created af-
ter the lowering phase, they cannot be intercepted by the modified
lowering phase described above. Most of the time, those reads are
non-critical, accessing the stack with a constant offset. Nonetheless,
we must also check if they have to be instrumented.

To do so, we intercept operand emission to identify those
operands that use an AMD64Address. Then, based on the values
used as base and index, we decide if the address should be pro-
tected. If so, we check if any protection, either masking or fencing,
has already been emitted on top of this operand. If not, then we
emit an 1fence to protect the memory access. Masking would be
impractical at this stage, as during operand emission, the regis-
ter allocation phase has already happened and the information
needed to disambiguate on-heap vs off-heap memory accesses is
no longer available. This step ensures that MONOCLE sees all the
memory accesses ever produced, since there is no further gener-
ation of code after the assembler has emitted the operands. Any
future modification to the compiler that might interfere with the
masking mechanism at the lowering stage, will still be caught and
protected with a memory barrier, causing a performance regression
but preserving the security guarantees.

Indirect Branches. The compiler identifies basic blocks that are
potential targets of indirect branches and emits an endbr64 at their
beginning, effectively marking entry points as required by the static
binary analysis algorithm. This instruction is also used to identify
indirect branch targets by Intel Control-flow Enforcing Technology
(Intel CET) and a semantic no-operation (NOP) instruction both on
CPUs with and without Intel CET support.
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program G == (V,E)

Vv v:=node | read r, e | jmp r| ret | Ifence
| pop r

expressions exz=v|r|f|le+e|le&e

locations ¢ ::= memory addresses

heapbase B

mask X

registers r

values v

trusted :{r}

Figure 5: A simplified GraalVM IR syntax for MONOCLE.

Based on our threat model of a managed runtime, the compiler
is trusted and thus the targets of indirect branches, both forward
and backward, are not under direct control by an attacker. While an
attacker can still mistrain indirect branch prediction, the scope of
mistraining is limited to existing entry points, which will only lead
to already protected execution paths. Still, we implement indirect
branch barriers (Indirect Branch Barrier (IBB)) as a defense-in-depth
mechanism to address potential speculative control flow hijacks.
With IBB enabled, we convert all indirect branch instructions, in-
cluding function returns, to be register-indirect jumps and emit a
memory barrier right before the jump instruction. The resulting
forward indirect branch looks as follows:

mov reg, [branch_target]
1fence
jmp reg
Whereas returns are replaced with the following pattern:
pop reg

1fence
jmp reg

5.3 Syntax & Operational Semantics

GraalVM programs are represented in a graph based intermediate
representation (IR) in static single assignment (SSA) form. Each pro-
gram’s IR consists of individual nodes, which may represent either
program statements or values, and edges represent either control
flows or data dependencies [10]. Note that this underlying IR is
used for any programming language implemented on top of the
Truffle Framework. That is, Truffle simplifies building programming
language interpreters by generating and evaluating managed pro-
grams represented in the IR. The Native Image component compiles
a programming language interpreter into an efficient executable
(i.e., graaljs). A consequence of using this IR based approach is
that MONOCLE’s implementation, for any interpreter built on top of
Truffle, can be simply defined by applying node transformations
over specific nodes (i.e., memory reads) in the IR.

Figure 5 describes the fragment of GraalVM IR syntax relevant to
MoNoCLE (i.e., individual nodes that read from a memory location
given by some expression). Observe that a simple walk over an
untrusted program’s generated graph IR can detect and transform
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G, v,trv=readr, f+e A = 7(f)
Gv,tr{(G[v]=readr, B+ e& x,v—v)
G, v,trreadr, f+e Az(f)

G, v,t+{(G,v—-v1)
G, v,trv=jmp?¢

UntrustedMemoryRead

TrustedMemoryRead

_ um,
G, v, T+ {G[v] = MmOV r1arget, £ :: Ifence :: jmp rrarger, T>J b

g, v,Trv=retft
G, v, T+ (G[V] = pop Ttarger == Ifence : jmp rarges, T)
G,v,7+ v =node
Gv,t+{(G,v—-v1)
g v,trv={}
gv,t+ G

Return

UnrelatedNode

Finished

Figure 6: Operational semantics for MoNOCLE transforma-
tions.

these potentially problematic reads from a managed heap’s base
pointer, as well as rewrite indirect jumps and returns to insert load
fences.

Figure 6 demonstrates the operational semantics of MONOCLE’s
compiler transformations as a linear scan over all the nodes in the
program G, starting with v = V (i.e., all the nodes in the graph),
and continuing until all nodes have been examined. The semantics
shown here represent small-step semantics (i.e., describing the
transformations made to the G as a result of making individual node
substitutions). Observe that the context during our transformation
is given by G, v, T where G is the current graph representation of
the program at the current step, v is the set of nodes left to examine
in G, and 7 is a predicate used to identify which memory regions are
trusted, and hence do not require address masking. Let G[v] =V
represent substituting the node given by v in G with the node v'.
After all nodes are enumerated in the graph, the final result for our
transformation is G in the last context G, v, 7. For transformations
that add multiple nodes to the IR graph, let :: denote a sequence
of nodes to be substituted in G (i.e., connecting edges between the
nodes).

5.4 Static Binary Verifier

Our static binary verifier is a modified version of Binsweep [30]. We
modified both the disassembly and the verification processes to suit
MonNocLE requirements. The extension to the static binary verifier
has been written in Java, relying on GraalVM Native Image to create
bindings with native libraries. To implement the verification process
we leveraged the extensible policy mechanism in Binsweep which
allows to define properties that can be checked on the recovered
CFG. As a result, we were able to express the necessary constraints
required by address masking and memory fencing. The overall
policy for MoNoOCLE is composed of around 1,000 SLoC.

6 Evaluation

In this section, we present both the security and performance eval-
uation for MONOCLE. subsection 6.1 provides the security analysis
of the mitigation. In particular, we reason about the mitigation
effectiveness w.r.t speculative execution attacks and we analyze the
correctness of the implementation while showing the distribution
of hardened instructions. subsection 6.2 presents the performance
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Table 2: Classification of critical instruction categories hard-
ened by MoNocLE. The percentages refer to the fraction of
each category out of the total number of critical instructions.

Hardening Categories Average Amount

Masked 62 %
Fenced 5%
IBB pattern 33 %

overheads and improvements introduced by MoNOCLE, compared
to the currently available mitigations addressing both runtime and
compilation time overheads.

6.1 Security Evaluation

In the first paragraph of the security evaluation we analyze the
correctness of the implementation. We present our verification
methods and the results obtained by running our static binary veri-
fier on the runtime compiled code. Then, in the second paragraph,
we reason about the effectiveness of our proposed mitigation.

Implementation Correctness. To evaluate the correctness of the im-
plementation, we profiled runtime compiled methods generated
by Graal using our static binary analyzer. In particular, we relied
on test262: the official ECMAScript conformance test. We col-
lected the compiled methods resulting from the execution of the
whole harness, and then we analyzed them. We confirmed that the
compiled methods passed our verifier, and we collected the data
regarding the amount of masking and memory barriers emitted.

The total amount of instructions were, on average, 1,435 per
compiled method. Of those, an average of 98 instructions (7%) were
found to be security-critical, thus relevant for our mitigation. Those
critical instructions can be divided into three categories, based on
the hardening method used:

e Masked instructions: instructions mitigated by address mask-
ing.

e Fenced instructions: instructions mitigated by the addition
of memory barriers.

o IBB instructions: instructions that are part of an IBB pattern.

Table 2 presents the quantified categorization. As expected, the
majority of security-critical instructions are hardened using mask-
ing. On the other hand, only a limited amount required fencing.
Instructions belonging to IBB, despite being register-indirect mem-
ory reads, do not need hardening. In particular, the patterns are not
in control of the adversary and the memory read is used to access
the target location. Moreover, both paths the code can take while
executing an IBB pattern lead either to an 1fence instruction or to
an int3 instruction which will not be executed speculatively.

Spectre Mitigation Effectiveness. In the context of Spectre PHT, Mon-
octLE blocks Spectre attacks, delivering the same level of security
guarantees as other techniques, such as Speculative Load Harden-
ing (SLH). The attacker can steer the control flow of a conditional
jump to either possible path, regardless of the condition. However,
with our mitigation deployed, each load that the attacker may find
on both paths is protected. As a result, if a load is masked then even
the speculative access must be inside the runtime isolate heap. If the
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load is protected by a memory fence, then speculation is blocked
on the path.

With a speculative control flow hijack primitive, such as Spec-
tre BTB or Spectre RSB, an attacker can redirect the speculative
control flow. However, the compiler will only produce code that
can target existing entry points and therefore an adversary, who
is only in control of the high-level language input to the managed
runtime, can only redirect speculative control flow to code starting
at valid entry points that have been considered by MonocLE: All the
memory accesses that can be found on a valid path are protected, as
before, either by address masking or by a memory barrier. Moreover,
since the set of valid entry points is known during static analysis,
all the possible paths that the adversary can use are verified to be
correct by our static binary analyzer.

Still, we implement IBB to mitigate speculative control flow
hijacks in general, similar in spirit to the 1fence/jmp mitigation
proposed by AMD [9]. The concerns raised by Milburn et al. [27]
show that the mitigation proposed by AMD might not leave enough
room for speculation in a setting where SMT is enabled, however
this does not apply to our threat model.

MonoctE also partially mitigates Spectre STL. This Spectre vari-
ant does not rely on speculative execution along an unintended
code path, but rather on speculation on data dependencies (see sub-
section 2.1). All memory accesses on the code path are protected
either by masks or fences. Fences trivially stop speculation on data
dependencies. In our masking implementation, the mask is not
loaded from memory and is applied to the index register in the ac-
tual load. So assuming data dependency speculation on the access,
it may fetch a stale value, but it cannot fetch data from outside the
isolate heap. However, memory reads that target constant addresses
outside the isolate heap remain vulnerable as those addresses are
not masked.

MonoctLE does not close side-channels or disables speculation
in general. It further does not aim to mitigate the effects of a bogus
speculative load, rather it prevents any value located outside the
memory region owned by an attacker from being speculatively
loaded. As a consequence, our mitigation is effective regardless
of the side-channel used. Since the mitigation does not aim to
prevent mistraining of any predictor to begin with, it also applies
in principle to cross-address-space scenarios, although those are
not part of our threat model.

In comparison to speculative load hardening, MONOCLE’s mem-
ory model of a contiguous untrusted memory region is advanta-
geous: address masking hardens memory loads without the need
to condition the load’s validity to a predicate. This removes the
necessity of a condition to bind the access to and allows to protect
loads that are outside the speculation path triggered by conditional
branches. As a result, MoNOCLE extends beyond Spectre PHT, to
which SLH is limited. Moreover, compared to value-poisoning ap-
proaches, such as LLVM’s loaded value poisoning [6], MONOCLE
acts at an earlier stage, by preventing loading protected memory to
begin with rather than making the data read unusable.

Case Study. We performed a case study with the JavaScript Spectre
PoC [12] published by Google’s Project Zero for the V8 Javascript
engine. The PoC places a secret value on V8’s managed Javascript
heap and leaks it with a Spectre-PHT gadget. While this setup
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does not match MoNocLE’s memory model, which assumes that
attacker-controlled Javascript can trivially directly access any data
it places on its own heap, we can still investigate whether MONOCLE
prevents the Spectre-PHT gadget from reading any code outside
the managed heap.

To this end, we ran the PoC and compared the JIT-compiled
assembly code both with and without MONOCLE enabled. As we
show in a detailed analysis in Appendix C, with MONOCLE enabled
all memory reads are relative to the heap base and the offset from
the base is always logically constrained to be inside the managed
heap. Thus, even assuming that an attacker holds a speculation
primitive that allows them to bypass the array bounds check, they
are unable to use this primitive to create read accesses outside the
managed heap.

6.2 Performance Evaluation

We evaluate MONOCLE’s performance across three different lan-
guage implementations on top of GraalVM’s Truffle framework:
Javascript, Python and Ruby. For each of these we run popular
benchmark suites and compare MoNOCLE’s performance against
a baseline without any mitigations as well as the existing fence-
based Spectre mitigations currently available in GraalVM. We also
present results of microbenchmarks that compare MoNOCLE against
speculative load hardening. We further evaluate the performance
impact of verifying the JIT compiled machine code at runtime.

All the experiments have been run on a machine equipped with
an Intel 19-10980XE (36 cores) @ 3.000GHz CPU with turbo boost
disabled and 64 GB of RAM.

Runtime overhead. We focused our tests on the JavaScript (Graal
JS), Python (Graalpython), and Ruby (Truffleruby) implementations
on Truffle which are deployable as native launchers that will JIT
compile untrusted user-provided code. We settled for the most
recent and common benchmarks publicly available, namely:

e SunSpider, Octane, and JetStream (1 & 2) for JavaScript;
e PyPerformance for Python;
e yjit-bench for Ruby.

Note that newer JavaScript benchmark suites incorporate some
benchmarks included in older bench suites. To avoid data duplica-
tion in the benchmarks results, our results always refer to incre-
mental versions of the named suites. Meaning, JetStream?2 results
only incorporate benchmarks that were not present in JetStream
and so on.

In all the suites, we present the slowdown of MONOCLE against a
non-mitigated version of Oracle GraalVM. Moreover, each bench-
mark shows the improvements over the currently available mitiga-
tion which can be set to three different optimization levels to allow
a trade-off between performance and security:

o AllTargets: All branch targets are instrumented with a bar-
rier instruction. The exhaustiveness of this mode provides
comprehensive security at the cost of significant slowdown.

o GuardTargets: Only branch targets that are relevant to mem-
ory safety are protected.

e NonDeoptGuardTargets: Further reduces the set of instru-
mented branch targets compared to GuardTargets by remov-
ing barriers from branches that deoptimize. Those branches
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Figure 7: Slowdown of MONOCLE in comparison to existing mitigations in GraalVM as well as a baseline without any mitigation.
Each mitigation is also paired with IBB. The evaluation is done with popular benchmark suites for Javascript, Python and Ruby.

Table 3: MoNoOCLE speedup compared to currently available
Spectre mitigation on the latest version of Oracle GraalVM
without IBB.

Runtime speedup without IBB
Monocle NonDeopt Guardtargets AllTargets

SunSpider 1 1.09 1.95 4.48
Octane 1 1.80 2.44 4.07
Jetstream 1 1.68 3.86 7.32
Jetstream2 1 1.40 2.11 3.55
Python 1 1.15 1.87 3.27
Ruby 1 1.10 1.70 3.19

can be executed only once, then control is transferred to the
interpreter. Consequently, the attacker’s capability of train-
ing the branch predictor is very limited. NonDeoptGuard-
Targets will henceforth be abbreviated with NonDeopt.

Additionally, we benchmarked the performance of MONOCLE
and the above-mentioned mitigations with IBB. Even for this set of
benchmarks, we kept the non-mitigated version of Oracle GraalVM
as the baseline.

Figure 7 presents the slowdowns. We labeled Baseline the latest
version of Oracle GraalVM. In the case of JavaScript, the bench-
mark measures performance as throughput, thus we computed the
slowdown as Ty /T;, where T; represents Baseline throughput and
T the employed mitigation throughput. For Graalpython and Truf-
fleruby the benchmarks measured performance with time, thus the
slowdown has been computed as Li /Ly, where L; is the latency
measured on Baseline and L the latency with the mitigation en-
abled. Table 4 and Table 3 summarize the speedup of MoNOCLE
compared to the currently available mitigations with and without
IBB respectively.

Despite still observing a slowdown compared to the non-
mitigated version of GraalVM, the benchmarks demonstrate a major
speedup in all three languages compared to all fence-based miti-
gations that are currently available in GraalVM. Compared to the
average slowdown of the comprehensive mitigation provided by
AllTargets, MONOCLE is 4.4x / 4.1x faster (without and with IBB).

Barrier Reduction. To evaluate how many barriers are emitted by the
different mitigation approaches, we took the Spectre PoC from https:

1198

Table 4: MoNOCLE speedup compared to currently available
Spectre mitigations on the latest version of Oracle GraalVM
with the modified software implementation of IBB.

Runtime speedup with IBB
Monocle NonDeopt Guardtargets AllTargets

SunSpider 1 1.11 1.84 4.08
Octane 1 1.17 2.34 3.97
Jetstream 1 1.69 3.93 7.48
Jetstream2 1 1.14 1.78 3.24
Python 1 1.12 1.76 3.12
Ruby 1 1.14 1.65 2.96

Table 5: Amount of masking patterns and memory barriers
executed at runtime. Each cell reports the number of masked
and fenced instructions in thousands.

Runtime hardened instructions [masked/fenced]

25k 50k 75k 100k
Monocle 365/73 740/148 1115/223 1490/298
NonDeopt -/146 -/296 -/446 -/597
GuardTargets -/365  -/743 -/1115 -/1493
AllTargets -/1051  -/2129 -/3203 -/4280

//leaky.page/ and run it using gdb to count the number of times an
1fence or a masking pattern (only present in MONOCLE) is executed.
We vary the number of iterations to account for compilation tiers
that are only activated after a certain number of iterations. Table 5
shows how Monocle drastically reduces the amount of memory
barriers required, even compared to NonDeoptGuardTargets.

Speculative Load Hardening. To compare MoNocLE with SLH, we
created a synthetic benchmark to analyze the core patterns used
by SLH, address poisoning, and MoNOCLE, memory masking. The
benchmark consists of a conditional array access that qualifies as a
Spectre-PHT gadget. Since GraalVM does not offer an implementa-
tion of SLH, we chose to use the implementation of SLH in LLVM-18
for comparison. To this end, we compile with and without SLH to
obtain the machine code for the benchmark. We then manually
instrument the unprotected machine code with the masking as
employed by MONOCLE.


https://leaky.page/
https://leaky.page/
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Figure 8: Execution time of the SLH benchmark as measured
across 1000 iterations per setting.

Table 6: Comparison of MonocLE and SLH against a baseline
without any mitigations. The measurements are done with
the LLVM machine code analyzer over 100 simulated itera-
tions.

Runtime Iter Instructions Cycles uOps

Baseline 1.00x 100 1400 310 1600
Monocle 0.78x 100 2000 436 2200
SLH 0.48x 100 2500 1006 2700

Our execution time measurement results in Table 6 show that
MonoctLE outperforms SLH, causing a slowdown of only 22% com-
pared to 52%. Figure 8 provides further detail on the execution time
distribution of the benchmark measured over 1000 iterations.

We investigate the reason for the performance difference with
the LLVM Machine Code Analyzer !. As expected, the tool confirms
an increased backend pressure from 61.45% for MONOCLE to 84.79%
for SLH. This is caused by the inherent data dependencies of SLH,
in particular the cmovs used in the LLVM implementation.

More details on the benchmark, including the actual machine
code evaluated, are presented in Appendix B.

CompPILATION TIME OVERHEAD. MONOCLE allows the compiled meth-
ods to be analyzed before being installed to ensure the effectiveness
of the mitigation. This requires running the static binary verifier
on the produced assembly code. We evaluated the overhead of
this analysis comparing it with the time spent during compilation
and observed a negligible overhead. In particular, we recorded the
compilation times, for both Tier 1 and Tier 2 compilations of the
three benchmarks suites used for the performance evaluation. We
observed the following results:

o Tier 1: average compile time of 41ms and a median of 17ms;
o Tier 2: average compile time of 402ms and a median on 98ms.

Running the static binary analyzer on the same set of compiled
methods shows on average overhead of 0.25ms and a median over-
head of 0.20ms. We consider less than 1% performance overhead
negligible, especially since it is only incurred once, during compila-
tion.

https:/llvm.org/docs/CommandGuide/llvm-mca.html
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7 Discussion & Related Work

Swivel [28] applies comparable Spectre mitigations to the Lucet
WebAssembly compiler [2]. Unfortunately, Lucet has been discon-
tinued years ago and was limited to WebAssembly. In contrast,
MonNoctE is implemented and evaluated on a multi-language pro-
duction runtime. MoNOCLE also increases the overall protection
level by addressing the challenge of verifying the actual machine
code produced by the compiler before execution. This significantly
reduces the risk of bugs in the compiler, which is important as
Spectre vulnerabilities can be hardly covered by regression tests.

In SpecCFI [24] the authors propose a similar approach to mit-
igate Spectre BTB and Spectre RSB, using known mitigations for
Spectre PHT. However, their assumption of only using hardware-
assisted CFI collides with the lack of support on server operating
systems. SpecCFI does not include a verification phase and, since
mistraining of the BTB is still possible with CFI on, an attacker can
find gadgets starting from a valid entry point. In contrast, MONOCLE
deploys address masking on all the memory accesses to prevent an
attacker from finding a valid gadget close to a valid entry point.

Ghostbusting [21] aims to enhance Spectre protection within a
process, by utilizing Intel® MPK to establish separate isolation do-
mains. However, the impracticality of relying solely on Intel® MPK
arises due to its limitation to only 16 domains, making it unsuitable
for isolating multiple sandbox instances. Moreover, it is only lim-
ited to CPUs supporting Intel® MPK. Finally, the approach requires
changes to both the code and the underlying operating system
while our approach only relies on a compiler extension. Narayan
et al. [29] proposed another intra-process isolation mechanism
which both improves over existing SFI techniques and mitigates
Spectre for processes using the proposed sandbox. However, the
approach is hardware-assisted and requires changes to the CPU
microarchitecture and the operating system.

Among Intel’s proposal for speculative execution control, Indi-
rect Predictor Control (IPRED_DIS_U) [20] allows disabling indirect
branch predictions. Enabling this feature on supported CPUs will
mitigate all speculative control flow hijacks. If enabled, IBB is en-
tirely redundant. However, disabling indirect branch prediction
in hardware affects the entire process, thus presumably causing
significantly higher impact on performance

An orthogonal approach for mitigating multiple Spectre variants
with a comprehensive software-only solution has been proposed by
Hertogh et al. [18]. In their work, they physically separate different
security domains by allowing them to run on separate cores.

8 Conclusion

This paper presents MONOCLE, a novel approach tailored to address
the challenges posed by speculative execution attacks within man-
aged runtime environments employing JIT compilation. MONOCLE
introduces a pragmatic yet effective strategy combining software
fault isolation concepts and memory barriers. MoNocLE effectively
mitigates speculative execution attacks, ensuring that all compiled
code is statically checked to verify that potentially vulnerable mem-
ory accesses have been hardened. The proposed implementation
shows significant performance improvements over the existing
Spectre mitigation available in Oracle GraalVM while achieving
the same level of security.


https://llvm.org/docs/CommandGuide/llvm-mca.html
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A GraalVM

GraalVM [43] stands as a comprehensive suite of polyglot runtime
environment technologies, developed by Oracle Labs. Central to its
functionality is the Graal compiler, which offers versatile capabili-
ties. One of its primary roles is as a replacement for the standard
JIT compiler in the HotSpot Java Virtual Machine (JVM). In addi-
tion to enhancing the JVM’s performance, GraalVM can produce
native images [41]. These images encapsulate a heap snapshot of an
application after startup, coupled with all reachable code precom-
piled by the GraalVM compiler. This compiled code is supported
by SubstrateVM, which provides essential runtime services, such
as garbage collection, typically handled by a Java VM.

A.1 Truffle

An integral aspect of GraalVM’s polyglot capabilities is the incor-
poration of Truffle [42], a framework designed for implementing
programming languages. Truffle operates by performing partial
evaluation on language implementations, transforming their code
into an intermediate representation that the Graal compiler can di-
rectly compile into machine code. This synergy between Truffle and
the Graal compiler allows for the implementation of a wide range
of languages with optimal performance. GraalVM ships with a col-
lection of pre-built Truffle language implementations, including
popular languages such as Javascript [14], Python [15], Ruby [16],
and R [13]. These Truffle language implementations, when compiled
into native images, can be executed either as standalone entities
or embedded seamlessly within regular native code applications as
shared libraries.

A.2 Isolates & Compressed References

GraalVM native image supports in-process isolation via isolates [40]
to allow multiple tasks to run independently in the same address
space. Each isolate has its own heap, which is disjoint from other
isolates’ heap. As a consequence, it is not possible to have direct
references to objects across isolates. Notably, the heap base of the
isolate is stored in a dedicated register. The value is updated when
the thread changes the isolate in which it is running.

Besides, GraalVM supports compressed references in the context
of isolates. When this feature is enabled, all references are repre-
sented using 32 bits instead of 64 bits. In particular, references are
stored as offsets from the heap base of the isolate. When compressed
references are enabled, each isolate has a contiguous portion of
memory reserved as a heap whose size can at most be 35 bits: 32 bits
of offset + 3 bits of alignment since all Java objects are byte-aligned.

B Speculative-Load Hardening Benchmark

This section expands on the comparison between MoNOCLE and
SLH. For the comparison we created a synthetic benchmark in C
that allows us to stress-test the performance of the two different
core patterns: address masking for MoNocLE and address poisoning
for llvm SLH. We synthesized a simple conditional array access,
which translates to a Spectre-PHT gadget. As mentioned in subsec-
tion 6.2, we compile the benchmark with LLVM-18 with and without
SLH enabled to obtain both machine code for the SLH pattern as
well as a plain baseline. We manually apply the address masking
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technique used by MoNoOCLE to the basline to obtain machine code
for the address masking pattern.
The following code has been compiled using clang-18, with the
-01 option as the baseline configuration. Furthermore, the same
code has been compiled using both the -01 and the -mspeculative-
load-hardening flags. Note that the -01 option has been preferred
compared to the more common -02 to ease the manual assembly
patching. Indeed, -02 would already make use of loop unrolling
techniques.
int func(char *arr, int length) {
int value = 0;
for (int i=0; i<ITERATIONS; i++) {
int condition = arr[i];
if (condition) {
value += arr[i];
} else {
value += arr[0o];
}
}

return value;

Finally, the assembly generated from the baseline has been mod-
ified as follows for MONOCLE. As can be seen, a mask that covers
the entire address space is used since we lack the concept of an
isolate, thus we cannot restrain the access to a specific subset of the
address space. However, this does not influence the overall bench-
mark since, even with the more narrow mask that MONOCLE uses,
in a correct execution the same amount of bits (none) as for the
emulated versions are modified by the mask itself. The assembly
code implementing the loop logic, visible in the first two versions
from the .LBB1_3 label, has been removed for the sake of clarity
since the code is identical for the three versions.

The baseline assembly:

movzx edx, byte ptr [rdi + rcx]

test dl, dl
jne .LBB1_3
movzx edx, byte ptr [rdi]
jmp .LBB1_3

The MoNoCLE assembly:

mov r14, OxFFFFFFFFFFFFFFFF
and rex, rl4

movzx edx, byte ptr [rdi + rcx]
test dl, dl

jne .LBB1_3

mov r13, rdi

sub ri3, ri5

mov r14, OxFFFFFFFFFFFFFFFF
and r15, ri4

movzx edx, byte ptr [r13 + ri5]

jmp .LBB1_3
The version compiled with SLH:

movzx r8d, byte ptr [rdi + rsi]

or r8b, cl

test r8b, r8b

je .LBB2_3

cmove  rcx, rdx

jmp .LBB2_4
.LBB2_3:

cmovne rcx, rdx
movzx r8d, byte ptr [rdi]
or r8b, cl
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For the benchmark, ITERATIONS has been fixed to 1000 and the
program has been run 1000 times for each version.

C Google Project Zero Spectre-PHT PoC

In this section we analyze how MoNOCLE mitigates the PoC pub-
lished by Google Project Zero for the V8 engine [12]. In particular,
we take a look at the generated assembly for the Spectre gadget,
the code responsible for the (speculative) arbitrary read, combined
with the access needed for the cache side-channel employed. The
following tests are run accordingly with the threat model proposed
in section 3. We rely on GraalVM isolates, while using GraalJS to
execute the JavaScript code used by the PoC.

In the scope of MONOCLE, we only care about the return state-
ment of the spectreGadget function in the spectre_worker. js?
file. That line is responsible for both the speculative access inside
spectreArray and the side-channel, using the result of the previ-
ous speculative access to bring a portion of the probeArray inside
the cache. In the following, we present the assembly code generated
by Graal]S during JIT compilation of the Spectre gadget function,
when MoNoOCLE is not enabled. For simplicity, we only report the
instructions that encode the last line of the function.

# edx contains the idx

cmp edx,DWORD PTR [r14+rax*8+0x4]
jae 0x1834

mov ebx,DWORD PTR [rip+0x1826]
lea rbx, [r14+rbx*8]

mov ebx,DWORD PTR [rbx+0x18]
test ebx,ebx

je 0x168c
mov ebp,DWORD PTR [rsp+0x74]
lea rax, [r14+rax*8]

movzx edi,dil

# spectreArray[idx]

movzx eax,BYTE PTR [rax+rdix1+0x8]
shrx  eax,eax,ebp

and eax, 0x1

mov esi,eax

shl esi,oxb

cmp esi,DWORD PTR [r14+rbxx8+0x4]
jae 0x1698

mov DWORD PTR [r14+r11x8+0x1c],edx
nop WORD PTR [rax+raxx1+0x0]

cmp  DWORD PTR [r15+0x20],0x0

jne 0xe85
sub DWORD PTR [r15+0x18],0x1
jle Oxecb

lea rbx, [r14+rbx*8]
# probeArray[...]
movzx eax,BYTE PTR [rbx+rsix1+0x8]

As can be seen, with no mitigation deployed the attacker can
potentially have control over the registers used for the read from
spectreArray, leading to possible speculative bogus reads outside
of the isolate running this code. However, if we look at the assembly
code generated when MONOCLE is enabled, further below, we can
see that all the memory reads are relative to the heap base (in our
case, the r14 register) and that the offset from the base is always
logically constrained to be inside the isolate. Thus, we conclude that
even assuming that an attacker holds a speculation primitive that
allows them to read past the specteArray array allocated memory,

Zhttps://github.com/google/security-research-pocs/blob/master/spectre.js/leaky.
page/templates/spectre_worker.js#L61
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they will not be able to use this primitive to read from outside of
the address space reserved for the isolate.

lea rdi,[r11%8+0x4]

movabs rdx,@x7ffffffff

and rdx, rdi

xchg  ax,ax

# eax contains the idx

cmp eax,DWORD PTR [r14+rdxx*1]
jae 0x14ba

mov edi,DWORD PTR [rip+0x15f0]
lea rdi,[r14+rdix8]

lea rdi,[rdi*1+0x18]

sub rdi,r14

movabs rdx,@x7ffffffff

and rdx, rdi

mov edx,DWORD PTR [r14+rdx*1]
test  edx,edx

je 0x1b85

mov ebp,DWORD PTR [rsp+0x74]
lea r11,[r14+r11x8]

lea rax, [r11+raxx1+0x8]
sub rax,ri14

movabs ri11,x7ffffffff

and ri1,rax

# spectreArray[idx]

movzx eax,BYTE PTR [r14+r11%1]
lea r11, [rdxx8+0x4]

movabs rdi,x7ffffffff

and rdi,ri11
shrx  eax,eax,ebp
and eax, 0x1
mov ebx, eax

shl ebx, 0xb

nop DWORD PTR [rax+0x0]

cmp ebx,DWORD PTR [r14+rdix1]
jae 0x1b76

cmp DWORD PTR [r15+0x20],0x0

jne ox11e7

sub DWORD PTR [r15+0x18],0x1
jle ox11ad

lea rdx, [r14+rdx*8]

lea rax, [rdx+rbx*1+0x8]

sub rax,ri4

movabs ri11,0x7ffffffff

and ri1,rax

# probeArray[...]
movzx eax,BYTE PTR [r14+r11x%1]


https://github.com/google/security-research-pocs/blob/master/spectre.js/leaky.page/templates/spectre_worker.js#L61
https://github.com/google/security-research-pocs/blob/master/spectre.js/leaky.page/templates/spectre_worker.js#L61
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